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Fig. S1. Variance of e↵ective contribution of cellular processes at each time point. Plots 
show time evolution of e↵ective contribution of cellular processes in the Drosophila no-
tum and standard deviation of them.
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Fig. S2. Boundary smoothing with various minimum circularities. The Drosophila no-tum was divided 
based on time-average tissue deformation rate (A), time-evolution of tissue deformation rate (B), time-

average cellular processes e↵ective contributions (C), and time-evolution of cellular processes e↵ective 
contributions. They were smoothed with the minimum circularity C ranging from 0.35 to 0.55. Some of 
them were colored for visibility.
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Fig. S3. Segmentations in di↵erent number of regions. Dorsal thorax (first to fourth columns) and 
wing blade (fifth and sixth columns) were divided into 3-9 regions. First column: segmentations 
based on time-average tissue deformation rate. Second column: segmentations based on time-

evolution of tissue deformation rate. Third column: seg-mentations based on time-average cellular 
processes e↵ective contributions. Fourth col-umn: segmentations based on time-evolution of 
cellular processes e↵ective contributions. Fifth column: segmentations based on time-evolution of 
tissue deformation rate. Sixth column: segmentations based on time-evolution of cellular processes 
e↵ective contribu-tions. The tissues were divided into 3 to 9 regions (from top to bottom rows). The 
regions were colored for visibility. When the number was too large and a result of the initial label 
propagation included a too small region, the small region tended to disap-pear in the cellular Potts 
model smoothing, and thus the final label propagation tried to integrate regions fewer than the final 
segmentation, sometimes resulted in undesired dis-connected regions (third column bottom row and 
fourth column sixth row). For dividing the dorsal thorax into three regions based on time-evolution 
of tissue deformation rate and wing blade into seven regions based on time-evolution of cellular 
processes e↵ective contributions, it failed to screen the parameters (the screening algorithm pursued 
to a too low temperature which would freeze any change in the cellular Potts model, second column 
first row and sixth column fifth row).
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Fig. S4. Heat maps of silhouette value. First row: segmentation based on time-average tissue 
deformation rate. Second row: segmentation based on time-evolution of tissue deformation rate. 
Third row: segmentation based on time-average cellular processes e↵ective contributions. Fourth 
row: segmentation based on time-evolution of cellular processes. Fifth row: conventional 
segmentation of large grid parallel to tissue axes. First column: silhouette values measured in the 
property space of time-evolution of de-formation rate. Second column: silhouette values measured by 
time-evolution of cellular processes. Third column: silhouette values measured by time-evolution of 
cell divisions. Fourth column: silhouette values measured by time-evolution of cell rearrangements. 
Fifth column: silhouette values measured by time-evolution of cell shape changes.
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Fig. S5. Plots of cellular processes in the segmentations based on time evolution of tissue deformation 
rate and the conventional large grid. (A, B) The tissue segmentation based on time-evolution of tissue 
deformation rate (A) and plots of cellular processes e↵ective contributions averaged in each region (B). 
The numbers indicate the regions. (C, D) The large grid (C) and plots of cellular processes in each region 
(D). Scale bars in A and C indicate deformation rate 0.02 h� 1 

with colors for tissue and cellular 
processes.
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Fig. S6. Projection of the segmentation onto the wing blade cells. The segmentations based on 
time evolution of cellular processes were projected. (A, B) The segmentation was projected onto 
the wing blade cells at 15 hr (A) and 32 hr APF (B), where the regions were indicated by 
colors. Scale bars indicate 50 µm.
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Movie 1. Cell rearrangements and cell shape changes after tissue compression. The cells 
with low and high surface tension were colored gray and yellow respectively. The cellular
Potts model was run on an image of 480⇥ 270 lattice and included 600 cells. The movie
is 7 fps and there were 5000 updates between the frames.
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1 Pseudo codes for tissue segmentation algorithms

In below pseudo codes show algorithms of the automatic tissue segmentation. Mat-
lab custom functions and framework developed for this study are available at GitHub
(http://doi.org/10.5281/zenodo.3626111). For details of the functions and framework,
see its README file and comments in the codes.

1.1 Region growing algorithm

Algorithm 1 shows a pseudo code of the region growing image segmentation in Matlab-
like syntax. It divides a bitmap image stored in a data object dataMap. In the al-
gorithm, a number of regions, a limit to update the seeds, and a metric are given as
parameters. With the parameters, supporting objects seedList, meanList, regionsList,
meter, and seeder are allocated and initialized. The seedList, meanList, and region-
sList are instances of data object with a property var representing seeds and means
of regions and regions, shared among the supporting objects. The meter is an object
measuring distance between the mean of region and a point adjacent to the region. A
method measure returns the distance measured by the given metric. The seeder is an
object choosing seeds of regions. Methods initalSeeds and initialMeans return indices of
randomly chosen points and their values. Once the dataMap was divided into regions,
methods newSeeds and newMeans return indices of points at center of the regions and
mean values of the regions. A method initalQueue returns an array where its element
represents a point adjacent to one of the seeds and holds the region and distance to the
region’s mean value. Inside a loop, a point in the queue with the smallest distance to the
region’s mean value is added to the region, and points adjacent to the point, returned
by a method neighborsOfPoint of dataMap, are added to the queue.

In our tissue segmentation, a Matlab custom function run region growing() iterates
this algorithm for given time, returning a stack of resultant partitions.

1.2 Label propagation on a consensus matrix

Algorithm 2 shows a pseudo code of the label propagation. It divides N objects into
clusters based on an N ⇥ N consensus matrix M whose rows and columns correspond
to the objects, and an element mij represents the frequency at which the i-th and j-
th objects were included in a cluster among given clustering results. A parameter tM
indicates a threshold value, where elements in M smaller than tM are ignored in the
label propagation.

In the tissue segmentation, 50 results of region growing were converted to the con-
sensus matrix and given to a Matlab custom function run label propagation() imple-
menting the label propagation. The number of resultant regions is influenced by tM ,
and thus a Matlab custom function run cm thresholding lp() screens tM values so that
run label propagation() returns the same number of regions with the given partitions.
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Algorithm 1: Region growing algorithm
input : dataMap to be segmented and parameters.
% seedList, meanList, regionsList, allocatedList, meter, and seeder are
supporting objects and variable initialized with the parameters.

seedList.var = seeder.initalSeeds;
meanList.var = seeder.initalMeans;
while loop counter is smaller than limit do

% Initialize partition, allocated list, queue.
regionsList.var(:) = false;
allocatedList(:) = false;
queue = seeder.initalQueue;

while queue is not empty do
point = queue(1);
if allocatedList.var(point.index) == false then

% Grow region to the point.
regionsList.var(point.index, point.region) = true;
allocatedList(point.index) = true;
% Enqueue neighbors of the point.
array = dataMap.neighborsOfPoint(point.index);
for neighbor in array do

neighbor.region = point.region;
neighbor.distance = meter.measure(neighbor);
queue = cat(1, queue, neighbor);

% Remove the allocated point from queue.
queue(1) = [];
% Sort queue.
[values, indices] = sort([queue.distance]);
queue = queue(indices);

else
queue(1) = [];

% Check convergnence.
lastMeanList = meanList.var;
seedList.var = seeder.newSeeds;
meanList.var = seeder.newMeans;
if isequal(lastMeanList, meanList.var) then

break;

return regionsList.var
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Algorithm 2: Label propagation
input : Matrix M and threshold tM .

% Cut elements in M smaller than the tM .
M(M < tM ) = 0;
% Make labelArray representing labels on N vertices.
labelArray = (1:N)’;

flag = true;
while flag do

flag = false;
% Enumerate vertices in random order and update their label.
for i = randperm(N) do

% Make labelMatrix representing labels on vertices.
labelMatrix = labelArray == 1:N;
% Choose label most weighted by edges incident to the i-th vertex.
,indices= max(sum(M(:,i) .⇤ labelMatrix),1));
if labels(i) = indices(1) then

% Update label of the i-th vertex.
labelArray(i) = indices(1);
flag = true;

% Convert labelArray to a matrix.
labelMatrix = labelArray == 1:N;
indices = any(labelMatrix,1);
partition = labelMatrix(:,indices);

return partition
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1.3 Cellular Potts model

Algorithm 3 shows a pseudo code of the cellular Potts model. It simulates a deforma-
tion of regions (partition of dataMap) by giving small fluctuations. In the algorithm,
an array of function handles, coe�cients to combine the functions results, the system
temperature, and the number of label updates are given as parameters. With the regions
and parameters, supporting objects analyser and dict are allocated and initialized. The
functions in the array calculate system energy with analyser and dict. For each fluctua-
tion, one of points at regions rim returned by analyser rim points is selected randomly,
and a label of neighboring points is also selected randomly and copied. Connectedness of
a region is checked locally, with a coordinate of neighboring points returned by dataMap
coordinates.

In the tissue segmentation, a Matlab custom function run CPM smoothing() imple-
ment this algorithm with energy functions combining area constraint, surface tension,
and total silhouette value. The coe�cients and temperature influence resultant regions,
and thus a Matlab custom function run CPM fitting() screens the parameters so that
run CPM smoothin() returns smoothed regions with a circularity larger than the given
value and the total silhouette value as large as possible.
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Algorithm 3: Cellular Potts model with region homogeneity
input : Partition, dataMap, and parameters
% regionList, analyser, dict, H functions, coe�cients, T , and counter are
supporting objects and variables initialized with the parameters.

% Calculate the system energy.
H = 0;
for k = 1:length(H functions) do

fh = H functions(k);
H = H + fh(analyser,dict) ⇤ coe�cients(k);

% Update labels for given times.
while true do

% Select a point randomly.
rim = analyser.rim points;
rim = find(rim);
if isempty(rim) then

% There is only one region.
break;

i = ceil(rand() ⇤ length(rim));
i = rim(i);

% Select a label from neighbors of the point.
neighbors = dataMap.neighborsOfPoint(i);
j = ceil(rand() ⇤ length(neighbors));
j = neighbors(j);
if any(regionsList.var(i,:) & regionsList.var(j,:)) then

% The i-th and j-th points are in a region.
continue;

% Check connectedness.
m = zeros(3,’logical’);
x0 = dataMap.coordinates(i).x - 2;
y0 = dataMap.coordinates(i).y - 2;
for k = neighbors do

x = dataMap.coordinates(k).x - x0;
y = dataMap.coordinates(k).y - y0;
m(y,x) = any(regionsList.var(i,:) & regionsList.var(k,:));

array = m([1,2,3,6,9,8,7,4]);
brray = m([2,3,6,9,8,7,4,1]);
if sum(array ⇠= brray) > 2 then

continue;

% Get a change of energy.
oldLabel = regionsList.var(i,:);
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regionsList.var(i,:) = regionsList.var(j,:);
newH = 0;
k = 1:length(H functions)

fh = H functionsk;
newH = newH + fh(analyser,dict) ⇤ coe�cients(k);

dH = newH - H;

% Adapt the change when possible.
p = exp(-dH / T);
if p > rand() then

H = newH;
counter = counter - 1;
if counter < 1 then

break;

else
regionsList.var(i,:) = oldLabel;

return regionsList.var
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