
A Supplementary Figures

Figure S1: pMN-p3 boundary precision decreases over time in Pax6 mutants. Trans-
verse sections of wildtype and Pax6−/− embryos between e9.0 and e10.5 stained for Pax6
(blue), Olig2 (red) and Nkx2.2 (green). Scale bar = 100µm. The pMN-p3 boundary becomes
less well defined at later time points.
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Figure S2: Olig2 expression in O2e33−/− mutants is lower and delayed in onset.
(A) Transverse brachial sections of e9.5 WT and O2e33−/− embryos stained for Olig2. The
O2e33−/− embryo has a smaller Olig2 domain with reduced expression levels. Scale bar =
50µm (B) Normalised Olig2 expression for single cells in WT and O2e33−/− embryo sections.
(C, D, E) Wholemount images of WT (C) and O2e33−/− mutants (D, E) for DAPI (i) and
Olig2 staining (ii-iii). Expression of Olig2 in wildtype is observed at 5 somites but in O2e33−/−

Olig2 onset occurs later at 8 somites. Olig2 is not observed in O2e33−/− embryos at 7 somites.
Scale bar = 100µm
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Figure S3: Transverse sections of the hindbrain (A) and thoracic region (B) e9.5
wildtype and O2e33−/− embryos Stained for Olig2 (red) and Nkx2.2 (green). Scale bar =
50. (A) Hindbrain: The pMN domain is smaller and the pMN-p3 boundary is less well defined
in O2e33−/− mutant embryos. (B) Thoracic region: The pMN domain is smaller and there is
more intermixing between pMN and p3 cells in O2e33−/− mutant embryos.
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B Glossary of dynamical systems terminology

The terms in this glossary come from the field of dynamical systems theory and more detail can 

be found in [Kuznetsov, 2008, Strogatz, 2014]. We then also use elements relating to 

stochastic processes for which further information can be found in e.g. [Van Kampen, 2007].

• Deterministic system
Deterministic systems are those that involve no randomness and will therefore always
behave in the exact same way when started from the same conditions. In this study
deterministic systems model the production and degradation of genes in the absence of
any stochasticity.

• Stochastic systems
These are systems of equations that incorporate randomness such that the system will not
behave the same way every time. In our study, these are derived from the deterministic
system by adding a stochastic element to form a Chemical Langevin Equation.

• Chemical Langevin Equation
The Langevin equation was derived by Paul Langevin as an equation that approximates
the randomness generated by individual processes and has been adapted to describe
chemical reaction systems [Lemons and Gythiel, 1997, Gillespie, 2000]. It assumes
each individual reaction in a system takes place with Gaussian noise and has been
shown to be accurate for systems in which the number of molecules for each component
(e.g. transcription factor) in the system is sufficiently large. It involves incorporating
stochastic terms, which describe the noise, into the deterministic system.

• Phase space
Phase space is an abstract space in which each dimension represents the concentration
of one of the components (transcription factors) of the gene regulatory network. This
allows the dynamics of the GRN to be visualised geometrically, such that the change in
concentration of the TFs over time traces out a line in phase space.

• Critical points
A critical point is a point in phase space where the deterministic system does not
change over time. That is, the time derivative of all concentrations at a critical point is
zero. These points can represent stable fixed points of a system, or unstable fixed
points.
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• Stable fixed points (Attractor points)
A stable fixed point is a type of critical point. If in the immediate surroundings of
a critical point the dynamics of the deterministic system indicate that the system
moves towards the fixed point from any direction, this critical point is termed a stable
fixed point. This notion is referred to as Lyapunov stability [Lyapunov, 1992]. In a
“Waddington-like” landscape visualisation, stable fixed points can be thought of as the
basins at the bottom of valleys. In this study, we look at systems with a maximum of
two stable fixed points (Fig. S4 & S5).

• Unstable fixed points
An unstable fixed point is also a type of critical point. In contrast to stable fixed
points, if the analysis of the deterministic system shows that the system moves away
from the fixed point when started some small distance away in at least one direction, the
point is termed an unstable fixed point. This means that the system will only remain at
this point if it is located there exactly. A stochastic system will not remain at such
a point as the stochastic terms will eventually result in the system moving away along
an unstable direction. In a “Waddington-like” landscape, unstable fixed points can be
thought of as peaks or ridges from which the cell will move away.

• Saddle point (Transition point)
A saddle point is a type of unstable fixed point that is attractive in at least one
dimension. In the systems within this study (as in many others), saddle points separate
stable fixed points. A system will approach a saddle point and pass through it during
a transition between stable fixed points. In a “Waddington-like” landscape, a saddle
point appears like a mountain pass between two peaks, or a saddle, hence the name
(Fig. S4 & S5).

• Bifurcation point
In the systems in this study bifurcation points are the positions along the morphogen
gradient where the system goes from having a single stable steady state to being
bistable; this means having two stable steady states and one saddle point (Fig. S4).

• Fluctuations in concentration
In a stochastic system the concentrations of the molecules fluctuate at all times in a
way described by the Chemical Langevin Equation. This means that a system never
stabilises at a constant concentration, even at a stable fixed point. Fluctuations in
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concentration around a stable fixed point remain and can be analysed and visualised in
phase space (Fig. S5).

• Noise driven transitions
Fluctuations in concentration near a stable fixed point move the state of the
system away from the stable fixed point in phase space. This can result in the system
reaching a saddle point and as a consequence transitioning from the original stable
fixed point to the basin of attraction of a different stable fixed point. This process
is a noise driven transition (Fig. S4 & S5).

• Minimum Action Path (MAP)
From the equations for the stochastic system it is possible to calculate the most likely
path that a system will take to complete a transition from one stable fixed point to
another [Kleinert, 2009, Bunin et al., 2012]. This is termed the Minimum Action Path
(MAP) and can be visualised as a gene expression trajectory in the phase space of
TF concentrations. In a “Waddington-like” landscape visualisation such paths can be
thought of as the lowest paths in the landscape, which cells are most likely to follow as
they move from one state to another(Fig. S5).

In addition, we use the following terms to describe the characteristics of a dynamical system that 
contribute to precise boundaries.

• Curvature
This is a measurement of how directly the Minimum Action Path (MAP) connects
a stable fixed point to a saddle point. In phase space, the length of the MAP is
compared with the shortest distance (straight line) between the initial stable steady
state and the saddle point, at a fixed neural tube position. The greater the ratio
between these two distances, the higher the curvature.

• Signal sensitivity
A measurement of the Euclidean distance in phase space between the stable fixed
point at which the system starts and the saddle point, at a fixed neural tube distance
from the bifurcation point (the same neural tube position where also the curvature
is determined). This is termed the signal sensitivity as it indicates how fast the stable
fixed point and saddle point separate in response to distance from the source of
morphogen. This term is proposed in the spirit of classical systems theory, where one
assesses changes in response to the control parameter, usually with some approximation
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near the bifurcation point. This exact approach is not possible in our case as we are
interested in signal sensitivity far from the bifurcation point.

Stable fixed point:
High Nkx2.2

All cells transition

Stable fixed point:
High Olig2

Saddle point

Stable fixed point:
High Nkx2.2

Some cells transition

Stable fixed point:
High Nkx2.2

Stable fixed point:
High Olig2

Saddle point

No cells transition

Bistable regionMonostable region

Ventral: closer to morphogen source Dorsal: further from morphogen source

Figure S4: One-dimensional sketches of the dynamical landscape of the neural tube network
at multiple dorso-ventral positions as indicated by the bottom arrow. The larger dots with
black contours indicate critical points as labelled on the plot. The multiple smaller dots
represent the final gene expression profile of different simulations of stochastic GRN at the
same neural tube position. The stochastic nature of the systems leads to cells not following
the same identical path. The leftmost plot indicates monostability for high Nkx2.2 near the
ventral end of the neural tube; here all cells present high levels of Nkx2.2 as there is no other
stable fixed point. In the bistable region all systems start out with high levels of Olig2 as
happens in the neural tube. The middle plot represents the landscape slightly dorsal to the
bifurcation point. The system here presents bistability so that noise driven transitions can
occur where the system is driven to and beyond the saddle point; however these transitions
do not always occur, leading to heterogeneity in fate decisions for cells at this position. The
plot to the right represents cells much further dorsal of the bifurcation; here the probability
of a system reaching the saddle point is extremely low even with stochastic terms as can be
appreciated from the figure. In this region despite the existence of bistability, only the high
Olig2 stable fixed point is observed as the probability for noise driven transitions to occur
is vanishingly small.
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Stable fixed point: High Olig2

Saddle point

Stable fixed point: High Nkx2.2

Minimum Action Path (MAP)

Fuctuations in concentration
near a stable fixed point

Noise driven transition

Figure S5: Sketch of an approximate dynamical landscape for the neural tube network at a
region of bistability, slightly dorsal to the bifurcation point. The x and y axes are the con-
centrations of Nkx2.2 and Olig2 respectively (2D phase space), whereas the z axis represents
the landscape of the system. The plot relates to the same neural tube position as the mid-
dle figure in Fig. S4, therefore there is heterogeneity in fate decisions. The colouring of the
critical points is consistent with Fig. S4; see also the legend. The light blue dots represent
two different simulations near each stable fixed point, illustrating fluctuations in concen-
tration. The thick black line illustrates the MAP from the high Olig2 stable fixed point to
the high Nkx2.2 stable fixed point. Note that it passes through a critical point – a saddle
(purple dot). Typical transitions from one stable fixed point to another are one-dimensional
in the sense that they proceed along the MAP; we can define an effective landsape.
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C Formulation and analysis of stochastic GRN dynamics

Formulation of stochastic dynamics

In order to investigate heterogeneity of gene expression in the neural tube we made use of
stochastic differential equations that describe the GRN and in particular the time evolution of
the concentration xj of each TF j. We start with a thermodynamic-like model as detailed in
[Cohen et al., 2014], which captures the macroscopic behaviour by a system of ODEs; these
contain terms for production and decay of each TF. The ODE description corresponds to
the limit of a reaction volume Ω that is large enough for the copy numbers Ωxj of all protein
species to be large, allowing fluctuations to be neglected; formally one takes Ω→∞. When Ω
is finite, stochastic effects occur. These can be described by the chemical Langevin equation,
a system of SDEs, see e.g. [Van Kampen, 2007, Gillespie, 2000]. The drift, i.e. the systematic
variation with time in the SDEs coincides directly with the deterministic limit. The diffusion
(stochastic) term arises from the stochastic nature of the individual protein production and
decay reactions; it is a Gaussian white noise [Gillespie, 2000] whose covariance structure is
determined by the mean reaction rates. In our case the chemical Langevin equation for the
protein levels xj within the GRN takes the form:

d

dt
xj =

∑
n

p(j,n)α(j,n) − xjβj + Ω−1/2εj(t) (C.1a)

p(j,n) = k(j,n)
∏

i x
ni
i∑

n′ k(j,n′)
∏

i x
n′

i
i

Dij = δij

[∑
n

p(j,n)α(j,n) + xjβj

]
(C.1b)

〈εi(t)εj(t′)〉 = δ(t− t′)Dij (C.1c)

The deterministic part of these equations is equivalent to those used in [Cohen et al., 2014].
The covariance (C.1b,C.1c) of the zero mean Gaussian white noise εj(t) arises from the decay
and production of each protein being independent and random, given the concentration of the
regulators of the relevant gene. In the equations above, α represents protein production rate
and β degradation rate, while the w provide the weights of the respective DNA conformations
(j,n) when multiplied by the respective concentration. The conformations are labelled by
the protein j being produced and the numbers n = {ni} of TF molecules bound. The δ in
(C.1b) and (C.1c) are the Kronecker and Dirac delta respectively. As explained above, Ω is
the volume of the system in which all reactions take place.

Development: doi:10.1242/dev.197566: Supplementary information

D
ev

el
o

pm
en

t •
 S

up
pl

em
en

ta
ry

 in
fo

rm
at

io
n



When looking at the chemical Langevin equation (C.1a), one notices that the rate∑n p(j,n)α(j,n)

for producing protein j, has a nonlinear dependence on the TF concentrations xi. One might
be concerned that with such a nonlinear dependence, modelling production of protein j as
a single reaction is too simplistic. However, (C.1a) can be obtained from a larger system
of simple unary and binary mass action reactions, in which the concentration of each DNA
conformation is kept track of individually. We only sketch this construction here and explain
its implications for the stochastic terms in (C.1a); for further details see [Herrera-Delgado
et al., 2018]. The deterministic part of the time evolution of the DNA concentrations is given
as follows:

d

dt
x(j,n) = γ

∑
p

(
kp+

(j,n−ep)x(j,n−ep)xp − kp+
(j,n)x(j,n)xp + kp−

(j,n+ep)x(j,n+ep) − kp−
(j,n)x(j,n)

)
(C.2)

Here x(j,n) = x̃(j,n)/γ
′ tracks the concentration of each DNA conformation and is scaled

down by a large factor γ′ to account for the low quantity of binding sites in relation to protein
numbers. Correspondingly the protein production rate constants α(j,n) = γ′α̃(j,n) have to be
large in order to give an appreciable overall rate of protein production nonetheless.

To derive the correct stochastic equations for the protein species, the large γ-limit of (C.2)
is taken: the concentration of each DNA conformation then changes sufficiently quickly that it
constantly tracks the instantaneous protein concentrations. For appropriately chosen binding
and unbinding rate constants kp+

(j,n) and k
p−
(j,n) this leads back to the thermodynamic-like form

of the deterministic part of the protein dynamics in (C.1a) [Herrera-Delgado et al., 2018]. As
shown in [Thomas et al., 2012] the existence of fast species (in our case, DNA conformations)
can lead to additional terms arising in the noise acting on the slow species (protein production),
as a consequence of reactions between slow and fast species. In our case it turns out that these
extra noise terms scale with γ′/γ. We then make use of the biological meaning of the terms:
1/γ represents the timescale of reaction rates for TF binding to DNA and 1/γ′ represents the
characteristic time for the process of going from active DNA to producing a protein. We find it
biologically reasonable to choose a 1/γ that is substantially smaller than 1/γ′, given the many
biological processes necessary for the production of a fully functional protein. The ratio γ′/γ is
then small so that the additional noise terms that arise from the general calculation in [Thomas
et al., 2012] become negligible, leaving exactly the noise terms in (C.1c). The intuition is that
because protein production is slow compared to binding and unbinding of factors to DNA, noise
from the many binding and unbinding events during production averages out; the overall noise
then arises only from the stochasticity of the production processes, at the relevant average
DNA concentrations. We note that in accordance with this conclusion, explicit calculations
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show that when γ′ is of the order of γ or larger, additional noise terms from the stochasticity
in DNA concentrations do enter the dynamics of the protein concentrations. Moreover, these
additional terms are dependent on the precise choices of binding and unbinding rates, which
are only partially constrained by the requirement that the thermodynamic-like deterministic
equations (C.1a) are retrieved for large γ [Herrera-Delgado et al., 2018].

Amount of noise

The noise level in our model is set by Ω−1, the inverse reaction volume. This determines the
scale of the stochastic fluctuations in protein production and decay, both of which the model
represents as single step processes. A larger Ω thus leads to smaller stochastic effects. In
equation (C.1a), multiplying Ω by the concentration of a protein species gives the number of
molecules for that protein. In our calculations we measure volumes in units that make typical
protein concentrations of order unity, so that Ω can be interpreted as a copy number. In
accordance with our observations in (Supp. D), a value for Ω can be read as a copy number
for Pax6, Nkx2.2 and Irx3; the corresponding typical copy numbers for Olig2 are ten times
higher (Supp. D).

However, the model is a coarse-grained description that does not explicitly describe the
many possible sources of noise within a living cell. These include spatial heterogeneity and
effects from the bursty, multi-step nature of protein production, which includes processes
such as transcription, translation, post-translational modification, protein folding and protein
shuttling [McAdams and Arkin, 1997]. As noted in [Van Kampen, 2007] and as implemented
in [Wang et al., 2007, Zhang et al., 2012, Li and Wang, 2013], Ω relates inversely to the
magnitude of fluctuations at a macroscale. It therefore represents the combined effect of all
the processes involved in gene regulation and protein production that contribute to the overall
system noise. Hence Ω is an “effective” system size parameter, which incorporates all the
stochastic effects in the system. Of particular relevance, mRNA molecule number is typically
one thousandth that of protein number [Schwanhäusser et al., 2011]. Consistent with this we
have found an average of ∼100,000 Olig2 protein molecules/cell but only ∼40 Olig2 mRNA
molecules/cell [Rayon et al., 2019].

We therefore set out to estimate lower and upper bounds on the noise level Ω−1, i.e. the
range of noise that makes sense within our description. The lower bound is given by the typical
number of proteins of each species in a cell: these numbers determine the minimum amount
of noise that must arise from the stochastic nature of protein production and decay. From
protein quantifications (Supp. D) we obtain Ωmax ∼ 10, 000 for the protein counts of Nkx2.2
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A B

WT WTPax6-/- Pax6-/-

Pax6

Olig2

Nkx2.2

Ω = 100 Ω = 2000

Figure S6: Simulations of the WT and Pax6−/− stochastic models for (A) = 100,
(B) Ω = 2000. For this range for Ω the simulations recapitulate the observed relationship of
boundary sharpness and position in WT and Pax6−/− mutants.

and Pax6 per cell at saturation levels (which in our model correspond to concentrations close
to unity). Olig2 has a higher estimated count of ∼100,000 and in accordance a 10 times higher
concentration in the model (the maximum concentration for Olig2 is 10, and 1 for the other
TFs). Because of the many neglected sources of additional noise, we expect 1/Ωmax to be a
considerable underestimate; indeed, simulations with this noise level show almost deterministic
behaviour. However, already for a slightly increased noise level (Ω = 2000), we find that the
relationships between jump-rate differences across WT and mutant phenotypes discussed in
the main text hold true (see Fig. S6). In particular, the WT presents a small amount of
heterogeneity (as observed in vivo) and the mutants have a more heterogeneous boundary
than the WT.

To obtain a lower bound for Ω, we measured the coefficient of variation at steady state for
all 3 TF values across embryos, to estimate the total amount of noise in the system (Fig. 1A).
We then decrease Ω in our numerical simulations until we see coefficients of variation similar
to those observed in vivo, giving Ωmin = 20. This assumes that all observed differences in
protein levels arise solely from the stochasticity in our model. We reason that there are other
sources of noise that make the coefficients of variation higher in vivo, such as noise resulting
from transcription, protein transport within the cell, antibody specificity and measurement
error, so that the amount of noise contributed by the stochasticity in our dynamical model
will be smaller than 1/Ωmin = 1/20. On that basis we find a reasonable smallest value of Ω
of ∼ 100. The value we use for all results throughout this study is Ω = 250, which is within
the broad bounds of Ωmin = 20 and Ωmax = 20, 000. Importantly, the results we observe
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remain qualitatively unchanged across the entire range of Ω that we assess as reasonable,
100 ≤ Ω ≤ 2000 (Fig. S6).

To confirm that the effective Ω provides a reasonable estimate of the effect of noise, we
performed simulations of the GRN that incorporate the mRNA as well as the protein steps for
the production of TFs as additional variables in the system. For this we use experimentally
determined mRNA levels [Rayon et al., 2019]. With this addition, protein levels of between 104

and 105 molecules/cell and mRNA levels of ∼50 molecules/cell recapitulate the experimentally
observed variance in protein levels and the stochasticity of cell fate transitions (Fig. S7). Since
it is not our aim to add unnecessary complexity to the model, we did not include mRNA steps
in our further analyses.
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Figure S7: Stochastic simulations of the three genotypes incorporating mRNA as well as protein
production. Setup consistent with the simulations shown in the manuscript, with the same
colour code and top-down being dorso-ventral. The simulated model includes transcription and
translation by including mRNA and protein concentrations for each TF. The simulations use
a copy number of 100,000 protein/molecules per cell for Olig2 and 10,000 for the other TFs.
For mRNA of Olig2, 40 molecules per cell were used, and 20 molecules for all other mRNA
numbers. Parameters for transcription and translation have been extracted from experimental
measurements [Rayon et al., 2019]. The lines along each simulation graph show the probability
of finding a cell in the p3 state at each neural tube position, with the lines indicating the
boundary width extracted from these probabilities.

Minimum action path

Much of the theoretical analysis in the main text concentrates on the stochastic transitions
between fixed points of the deterministic GRN dynamics, which are long-lived metastable
states of the stochastic dynamics. The minimum action path (MAP) is the most likely path
the system takes in such a transition (for large enough values of Ω), from a steady state to
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a transition point (which is the saddle point of the dynamical system) and then onwards to
a new steady state. The second piece of the path always follows the deterministic dynamics
and has a negligible effect on the transition times, so we focus on the first part of the path.

The negative log probability for any path is proportional to what is called the action, which
for our Langevin dynamics is of so-called Onsager-Machlup form [Kleinert, 2009]. The action
is an integral over time of the Lagrangian, which in turn depends only on the current state
(vector of concentrations) and velocity of the system. The time integral can be discretised and
the action then minimised as described in e.g. [Bunin et al., 2012]. We analyse the resulting
MAP in gene expression space in order to understand how its shape affects the jump times
between steady states and thus eventually the boundary width.

The typical time the system takes to reach any point on the MAP scales exponentially
with the action up to that point, hence this quantity can be interpreted as an effective energy,
within the analogy of a particle making a transition from one local minimum in an energy
landscape across a barrier to another minimum. In Fig. 4F we plot this effective energy along
the (relative) length of the MAP, describing the effective energy landscape governing the
transition. Fig. S8 shows an alternative representation that gives further insight: we plot the
derivative of the action along the path, which is the effective force pushing the system back
towards the initial steady state.
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Figure S8: (A-B) Unnormalised and normalised space derivative of the action along the MAP,
plotted along the length of the path. This reflects the effective force driving the system back
towards its initial steady state. In the WT system (gray) the force is highest near the beginning
of the path, leading to a noticeably skewed plot, while the O2e33−/− (red) and Pax6−/− (blue)
more nearly symmetric force profiles. The high initial force in WT responsible for the large
typical jump times in the system, and is related to the significant curvature of the MAP away
from the straight line between initial steady state and transition point (Fig. 4D-F)
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Calculating magnitude of fluctuations

To compare the magnitude of fluctuations between WT and mutants in silico we take two
separate approaches. The first is to consider fluctuations in expression levels around a steady
state, before any transition to a new state occurs. For moderate noise levels such fluctuations
can be analysed using a linear expansion of the dynamics around the steady state (here: pMN),
leading to a local Gaussian distribution of expression levels. The corresponding covariance
matrix C can be calculated from the Jacobian matrix J of the linearized dynamics and the
noise covariance D as defined in (C.1b), both evaluated at the steady state. The required
link between the three matrices is the Lyapunov equation, which determines C via

D = JC + CJT

Once C has been found we normalise it by the corresponding pMN steady state values (X),
to obtain C̄ = diag(X)−1Cdiag(X)−1. We finally compute the trace of C̄ and take the
square root. The end result is the typical standard deviation (root-mean-square fluctuation)
of the expression levels, relative to the mean expression levels. This is shown in Fig. S9A as
a function of neural tube position.
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Figure S9: Comparing total noise across genotypes (A) Comparison of noise levels as
defined by root-mean-square relative expression level fluctuations, calculated within a Gaussian
approximation near the steady state. Points represent different positions along the neural tube
(B) Noise levels defined as noise variance calculated at equidistant points along the MAP, at
fixed fractional neural tube length from the bifurcation point. Note that in both definitions,
noise levels are comparable across WT and both mutants, with slightly lower values in Pax6−/−.

The second approach to quantifying noise levels is to use the noise variance, which is
the trace of the noise covariance matrix given in (C.1b). This noise variance depends on
the expression levels so we average it across equidistant points along the MAP and take
the square root of this value to obtain the root-mean-square noise level. Example results at
a specific position along the neural tube are shown in Fig. S9B; results at other positions
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were qualitatively the same (data not shown). Both approaches to quantifying noise show
comparable total variance across the different genotypes, with slightly lower noise in Pax6−/−

than in WT and O2e33−/−. To make the comparison to in vivo observations we accounted
for the fact that experimentally, noise levels are averaged across several neural tube positions
throughout the pMN domain. We therefore also performed an average in silico of neural tube
positions to obtain comparable data for Fig. 3D.
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D Protein Number Quantifications

Olig2-HA-
SnapTag
52 kDa

SnapTag
20 kDa

 D4   D58       4       2      1     0.5  0.25 0.125 0.062

SnapTag (ng)

3.9 x 105 cells

Cell lysate
 (RA+SAG)

 D5   D6      D6     D7

Cell lysate

1     0.5    0.25   0.125  0.06  0.03 0.015

Nkx2.2 (ng)

3.9 x 105 cells

RA+SAGRA

Nkx2.2
30 kDa

Nkx2.2
recomb.
47 kDa

 D5   D6

Cell lysate

8        4        2       1      0.5   0.25  0.125

Pax6 (ng)

 D6   D7

RA+SAGRA

Pax6
46-48 kDa

Pax6
recomb.
55 kDa

1 ng = 1.095 x 1010 Pax6 
molecules (recombinant)

1 ng = 1.281 x 1010 Nkx2.2 
molecules (recombinant)

Day ng in 
band

Cells 
loaded

Nkx2.2+ 
cells %

Nkx2.2 molecules 
per cell

6 0.06 390,000 29.4 7,000

7 0.01 390,000 37 1000

Day ng in 
band

Cells 
loaded

Pax6+ 
cells %

Pax6 molecules 
per cell

5 0.45 390,000 80.5 15,000

6 1.09 390,000 81.3 38,000

A

B

C

Day ng in 
band

Cells 
loaded

Olig2+ cells 
%

Olig2 molecules 
per cell

4 0.28 390,000 23.5 90,000

5 2.09 390,000 64.9 250,000

1 ng = 3.011 x 1010 SnapTag
molecules

3.9 x 105 cells

Figure S10: Quantifying Protein Copy Number (A) Flow cytometry analysis to determine
percentage of Olig2 expressing cells in differentiated ES cells at the indicated days. Table shows
quantification of a gel for days 4 and 5. Olig2 has approximately a 10-fold higher protein copy
number compared to Nkx2.2 and Pax6. (B) Analysis of Nkx2.2 expressing cells on days 6
and 7 of differentiation. Nkx2.2 molecules per cell calculated using the measured percentage
of cells expressing Nkx2.2 and quantification of the Western blot analysis. (C) Analysis of
Pax6 expressing cells to determine protein copy number at days 5 and 6 of differentiation.
Pax6 molecules per cell calculated using the measured percentage of cells expressing Pax6 and
quantification of the Western blot analysis.
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E Simulating WT and mutant GRNs
We used the equations and parameters described in [Cohen et al., 2014] for the GRN that
patterns the neural tube; this parameter set was optimised to replicate the boundary positions
in wild-type and mutant embryos. Following the inclusion of the noise term as explained in
Supp. C we explored the effect of the initial conditions for the TFs (i.e. their initial expres-
sion levels xj). The aim was to find a consistent set of initial conditions that sustain the
boundary positions but also recapitulate the boundary sharpness of each mutant. The initial
conditions that satisfied these conditions were identified in a systematic scan as xPax6 = 0.1,
xOlig2 = 0, xNkx2.2 = 0, xIrx3 = 0.1. The p3-pMN boundaries in WT, Irx3−/−, Nkx2.2−/−

and Olig2−/− simulations remained sharp as is the case in vivo (Fig. S11). Only the loss of
Pax6 resulted in decreased boundary sharpness. Boundary positions remained consistent with
in vivo observations as was the case in the original deterministic model (Fig. S11) & [Cohen
et al., 2014].

Pax6 levels

Pax6-/-

Nkx2.2-/-

Olig2-/-

WT

Irx3 levels Nkx2.2 levels Olig2 levels

Figure S11: Patterning phenotypes produced by stochastic simulations for WT and
mutants. Predicted expression patterns for the four TFs in the indicated genotypes are
qualitatively similar to those in [Cohen et al., 2014]. Ventral to the left and dorsal to the
right. Although boundary positions change, boundary precision is largely unaffected except for
Pax6−/−, consistent with in vivo experimental observations.

Model parameters

We detail the parameters used throughout the paper to model neural tube development for 
equation (C.1a), and adapted for the computational screen as explained in Supp. F.

Development: doi:10.1242/dev.197566: Supplementary information

D
ev

el
o

pm
en

t •
 S

up
pl

em
en

ta
ry

 in
fo

rm
at

io
n



Name Meaning Value Source
αP Pax6 production rate 2 [Cohen et al., 2014]
αO Olig2 production rate 2× 10 [Cohen et al., 2014] & Supp. C
αN Nkx2.2 production rate 2 [Cohen et al., 2014]
αI Irx3 production rate 2 [Cohen et al., 2014]
βP Pax6 degradation rate 2 [Cohen et al., 2014]
βO Olig2 degradation rate 2 [Cohen et al., 2014]
βN Nkx2.2 degradation rate 2 [Cohen et al., 2014]
βI Irx3 degradation rate 2 [Cohen et al., 2014]
kPO Olig2 binding to Pax6 DNA 1.9/10 [Cohen et al., 2014] & Supp. C
kPN Nkx2.2 binding to Pax6 DNA 26.7 [Cohen et al., 2014]
kON Nkx2.2 binding to Olig2 DNA 60.6 [Cohen et al., 2014]
kOI Irx3 binding to Olig2 DNA 28.4 [Cohen et al., 2014]
kNP Pax6 binding to Nkx2.2 DNA 4.8 [Cohen et al., 2014]
kNO Olig2 binding to Nkx2.2 DNA 27.1/10 [Cohen et al., 2014] & Supp. C
kNI Irx3 binding to Nkx2.2 DNA 47.1 [Cohen et al., 2014]
kIO Olig2 binding to Irx3 DNA 58.8/10 [Cohen et al., 2014] & Supp. C
kIN Nkx2.2 binding to Irx3 DNA 76.2 [Cohen et al., 2014]
wP,p Polymerase binding to Pax6 DNA 3.84 [Cohen et al., 2014]
wO,p Polymerase binding to Olig2 DNA 2.01263 Converted from [Cohen et al., 2014]
wN,p Polymerase binding to Nkx2.2 DNA 0.572324 Converted from [Cohen et al., 2014]
wI,p Polymerase binding to Irx3 DNA 18.72 [Cohen et al., 2014]
kO,in Gli (Shh signal) binding to Olig2 DNA 180 Converted from [Cohen et al., 2014]
kN,in Gli (Shh signal) binding to Nkx2.2 DNA 373 Converted from [Cohen et al., 2014]

Ω System volume 250 Supp. C
xP(0) Pax6 initial condition 0.1 Supp. E
xO(0) Olig2 initial condition 0 Supp. E
xN(0) Nkx2.2 initial condition 0 Supp. E
xI(0) Irx3 initial condition 0.1 Supp. E

Where factors of 10 have been written in the table, these arise because we have modified
the model of [Cohen et al., 2014] to represent explicitly the experimental observation that Olig2
has a concentration 10 times higher than the other TFs. While this difference is immaterial
for a deterministic description of the GRN dynamics, it affects the stochastic representation
because larger copy numbers have smaller relative fluctuations.

The above parameters are used in the general model (C.1a) for the dynamics of the TFs
j = P (Pax6), O (Olig2), N (Nkx2.2) and I (Irx3). DNA conformations are defined by the
numbers n = (np, nin, nP, nO, nN, nI) of bound molecules of polymerase, Gli signal input,
Pax6, Olig2, Nkx2.2, Irx3 in that order. The only allowed conformations are the empty
conformation, the conformations with polymerase and nin = 0 or 1 signal molecule bound;
and conformations with at least one molecule of the other TFs bound, with maximally two
molecules from each other TF. All other conformations are assigned affinity zero. The weights
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for the allowed conformations are multiplicative, with bound polymerase contributing a factor
wj,p (see below), bound signal a factor kj,inxin and each TF i bound to DNA producing
TF j a factor kjixi. Examples of the corresponding affinities are kO,(0,0,0,0,1,0) = kON and
kO,(0,0,0,0,0,2) = kOI

2. The polymerase binding parameters are directly stated as the weights
wj,p = kj,pxp including polymerase concentration (which is assumed constant). As detailed in
[Cohen et al., 2014], this weight describes all basal production inputs for each TF and thus
represents input from TFs such as Sox2 [Graham et al., 2003, Oosterveen et al., 2012, Peterson
et al., 2012]. Finally, the protein production rates αj,n in the general model (C.1a) are set
to the value given in the table for the DNA conformations with bound polymerase, and zero
otherwise.

As an explicit example of the resulting GRN equations, we write here the production rate
for Olig2:

αOwO,p(1 + kO,inxin)
wO,p(1 + kO,inxin) + (1 + kOIxI)2(1 + kONxN)2 (E.1)

The signal input concentration xin is the gradient e−s/0.15, which depends on the dorsal-ventral 
neural tube position s ranging from 0 to 1 as in [Cohen et al., 2014].
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O2e33−/− mutant

To find parameter sets that describe the behaviour of the O2e33−/− enhancer mutation, we first
identified those parameters that are related directly to the deletion of the respective enhancer.
Analysis of the sequence of the enhancer together with CHIP-seq and ATAC-seq [Oosterveen
et al., 2012, Peterson et al., 2012, Kutejova et al., 2016, Metzis et al., 2018] suggested that
Gli proteins, Nkx2.2, Irx3, and Sox2 all have a direct effect on this enhancer (Fig. 2A). We
therefore considered variations in the parameters that specify Nkx2.2 binding, Irx3 binding, Gli
binding and basal production (corresponding to Sox2 binding). We systematically explored how
reducing the parameters for each of these interactions, to a fraction f of their original value,
could explain the observed phenotype. We used a uniform distribution to perform this search
and throughout this supplementary represent the respective parameter reductions directly in
terms of the ratio f between new and original (WT) parameter values.

Fitting in vitro delay and resulting predictions

We first identified parameter sets that could replicate the observed in vitro delay in the onset of
Olig2 expression in the mutant, leading to a reduced parameter space (Fig. S12). In this step
we do not set any constraints to the position or precision of boundaries between expression
domains as this information cannot be extracted from the in vitro system. The delay in Olig2
activation was determined for networks positioned a fraction 0.3 along the neural tube, and
we retained those networks that took twice the amount of time to express Olig2 than in the
WT. The same measurement was performed at other neural tube positions and resulted in
similar distributions (data not shown).

We next investigated what further phenotypical behaviour the retained parameter sets
predict, focussing on the domain size and boundary precision generated in response to a
graded Shh signal. We found that 68% of the parameter combinations reduced boundary
precision, 80% reduced the size of the pMN domain, with 83% presenting one or the other
of the phenotypes (data not shown). Here, the pMN domain size was calculated with respect
to the Shh gradient and we considered it reduced if it was below 70% of the WT size. For
determining boundary sharpness, we regarded as imprecise those systems that had a boundary
width at least twice the size of the WT; this width is calculated using the SDE system with
the thresholds described in Fig. 3B. The fact that a majority of the parameter sets identified
affected domain size and boundary precision encouraged us to generate the mouse lines.
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Figure S12: Distribution of parameter changes to mimic in vitro O2e33−/− mutant.
To recapitulate the O2e33−/− dynamics in vitro, model parameters were systematically ex-
plored to identify changes that could account for the delay in onset of Olig2 expression. The
graphs show the distributions of reduction factors f (x-axis) relative to WT parameter values,
across parameter sets that recapitulate the delay. The (y-axis) shows number of parameter
combinations that recapitulate the phenotype. The results show that what is needed to gen-
erate a delayed induction of Olig2 is a substantial reduction in Sox2 input while maintaining
input of Irx3.

Fitting in vivo phenotype with patterning information

Once the mouse lines were generated we confirmed the delay in onset of Olig2, and noted two
additional phenotypes as expected from the initial parameter screen: a loss of precision at the
p3-pMN boundary and a ventral shift of the pMN-p2 boundary. Importantly, this in vivo data
allowed us to define targets regarding boundary position and precision for our fitting of the
mutant phenotype. The new targets were therefore extracted from this data, and were used
to further constrain the results displayed in Fig. S12. These additional constraints were:

• The pMN-p3 boundary width to be at least twice the size of the WT as explained above.

• The pMN-p3 boundary position to be between [0.17 0.25] (as the WT boundary position
is at 0.17 and some of the in vivo mutants show a small dorsal shift).

• The p2-pMN position to be below or equal to 0.5 (WT boundary is at 0.55, this means
a reduction of the domain size of at least 15% with respect to WT) but higher than the
pMN-p3 boundary position, such that the pMN domain does not disappear.

• Other aspects of patterning not to be disturbed.

The resulting retained networks present a substantially reduced parameter space and are shown
in Fig. S13. From these parameter sets we took a representative point as our model for
the O2e33−/− mutant; as expected this replicates the observed experimental phenotypes.
Furthermore, we randomly tested three other resulting parameter sets and found a similar
dynamical behaviour to that of our representative point.
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Figure S13: Distribution of parameter changes to mimic in vivo O2e33−/− mutant.
Equivalent histograms to Fig. S12 with the additional constraints from in vivo observations:
ventral shift of pMN-p2 boundary and broad p3-pMN boundary. The main results are: main-
taining WT levels of Irx3 input; substantial reduction in Sox2 input, some reduction in Gli
input but with a broad distribution, and a mild reduction in Nkx2.2 input.
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F Screening three-node networks for precision

Defining a functional form

To perform a parameter screen we explored three-node networks with all possible interactions
between the nodes, as this has provided useful insights in other systems (Fig. 1A) [Cotterell
and Sharpe, 2010, Leon et al., 2016]. For the purpose of exploring different dynamics, we
enumerated the different possible transcriptional/occupancy states of the promoter to model
the production rates of a given protein. These rates depend on polymerase availability, signal
input (morphogen) and regulating transcription factors, with concentrations xp, xin and xi

respectively. The transcription factors i can be activating (i ∈ P) or repressing (i ∈ N ), with
P and N denoting the sets of activating and repressing transcription factors, respectively.
While in the previous model, in its most general form (C.1a), different protein production
rates can be used for different DNA conformations, in the neural tube network we used the
same production rate for all protein-producing input conformations (see Supp. E). We adopt
the same approach here and set the production rate to unity in appropriate units of time; thus
the model is specified only by the binding affinities of the various DNA conformations. Without
loss of generality we fixed the affinity (and hence the weight) of the unbound conformation to
1 as explained in [Sherman and Cohen, 2012]. We assign the weights of conformations with
only one bound molecule as kpxp, kinxin and kixi. In accordance with our previous model
(C.1a), we set the following constraints:

• All conformations with polymerase and without any repressor i ∈ N produce protein; it
does not matter whether signal or any activator i ∈ P are bound.

• Conformations that have one or more repressor i ∈ N bound together with either
signal, polymerase or any activator P are excluded, based on the assumption that these
molecules compete for the same binding site

• Binding of signal or any activator P enhances binding of polymerase

• No other cooperativity effects are present

Expressions for conformation states

The only states that can produce protein are those with polymerase bound. For brevity we
follow the convention in Supp. E and abbreviate

wp = kpxp (F.1)
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in the following, taking polymerase levels as constant throughout our dynamics. As specified
above, the only states that can bind polymerase are those that have no repressors bound. We
assume no cooperativity between signal xin and activators xi, i ∈ P , hence the total weight of
states that can potentially bind polymerase (assuming two binding sites per activator i ∈ P
but only one for the signal) is:

(1 + kinxin)
∏
i∈P

(1 + kixi)2 (F.2)

Given that repressors N can only bind by themselves, and that there is no other cooperativity
between the inputs, the total weight for conformations with at least one repressor N bound
while assuming two binding sites per repressor i ∈ N is:

−1 +
∏
i∈N

(1 + kixi)2 (F.3)

In accordance with biological intuition, polymerase is recruited by activators P or signal.
The simplest way to implement this is to increase the weight of conformations having both
polymerase and at least one activator i ∈ P or signal by a cooperativity factor c, giving a total
weight of:

cwp[−1 + (1 + kinxin)
∏
i∈P

(1 + kixi)2] (F.4)

Finally, the weight for the unbound (empty) conformation is taken as 1, as explained above,
and for the conformation with one polymerase bound it is wp as defined in (F.1). The total
weight, i.e. the denominator of the protein production rate, is then

wp+cwp[−1+(1+kinxin)
∏
i∈P

(1+kixi)2]+(1+kinxin)
∏
i∈P

(1+kixi)2−1+
∏
i∈N

(1+kixi)2 (F.5)

while the numerator is the total weight of conformations with polymerase, either on its own
(F.1) or together with activators or signal (F.4), giving overall for the production rate (which
with protein production set to unity is also the probability of being in a DNA conformation
that produces protein)

wp + cwp[−1 + (1 + kinxin)φ]
wp + cwp[−1 + (1 + kinxin)φ] + (1 + kinxin)φ+ ψ − 1 (F.6)

with the abbreviations

φ =
∏
i∈P

(1 + kixi)2, =
∏
i∈N

(1 + kixi)2 (F.7)
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General strong cooperativity limit

It will be convenient in the following to write the effective affinities of signal and activating
TFs in combination with polymerase in a form that includes the cooperativity effect from the
factor c, i.e. in terms of k̃in = c kin and k̃i = c ki for i ∈ P . The protein production rate is
then expressed as

wp + cwp[−1 + (1 + k̃inxin/c)φ]
wp + cwp[−1 + (1 + k̃inxin/c)φ] + (1 + k̃inxin/c)φ+ ψ − 1

(F.8)

with now
φ =

∏
i∈P

(1 + k̃ixi/c)2 (F.9)

We can now compare with the analogous expression (E.1) in the neural tube network. There
all interactions are repressive so that P is the empty set and hence φ = 1, which simplifies
(F.8) to

wp(1 + k̃inxin)
wp(1 + k̃inxin) + k̃inxin/c+

(F.10)

This agrees with (E.1) except for the middle term in the denominator, which represents the
weight of DNA conformations with only signal but no polymerase bound. Its absence in
the neural tube network formally corresponds to the strong cooperativity limit c → ∞. In
our screen we use a finite cooperativity c = 100 to avoid the extreme case of excluding
conformations with only signal bound completely; this value of c is still large enough, however,
to replicate the dynamics of the neural tube network. We thus take (F.8) with c = 100 as the
form of protein production rates in our screen; compared to the neural tube case this allows
us to include both activating and repressive interactions.

Adding a protein decay term (with unit decay rate) and stochastic fluctuations, the dy-
namics of the three-node networks in our screen, with protein levels x1, x2 and x3, is thus
described by

d

dt
xj = wj,p + cwj,p [−1 + (1 + kj,inxin/c)φj]

wj,p + cwj,p [−1 + (1 + kj,inxin/c)φj] + (1 + kj,inxin/c)φj + j − 1 − xj (F.11)

φj =
∏
i6=j

(1 + [kji]+xi/c)2

j =
∏
i6=j

(1 + [kji]−xi)2

for j = 1, 2, 3; compared to (F.8) we have dropped all tildes to unclutter the notation. 
We have also allowed the sets P and N of activating and repressing transcription factors 
to be determined implicitly by the system parameters. This is done by generalizing the 

affinities kji
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so that a positive sign indicates an activation of j by i and a negative sign a repression. The
corresponding switching of species i between the products over activators and repressors is
achieved mathematically by setting [k]+ = max(k, 0) and [k]− = max(−k, 0).

To mimic the structure of the neural tube network, we assume that only proteins 1 and
2 have direct signal inputs, while 3 does not, so that k3,in = 0. This leaves 11 network
parameters: 2 for the signal (gradient) inputs from the gradient (k1,in into node 1 and k2,in

into node 2), 6 from the interactions between TFs (k12, k13, k21, k23, k31 and k32) and 3 for
polymerase binding weights (w1,p, w2,p and w3,p).

Parameter exploration

We explored the 11 dimensional parameter space specified above using a uniform log distribu-
tion (log10), where the ranges are set differently depending on the parameter. Specifically we
chose the ranges as: range(kin) = [10 : 400], range(wp) = [0.1 : 10], range(kji) = [−100 :
−1] ∪ [1 : 100] with the sign of each regulation kji being chosen randomly.

We provide a schematic in Fig. S14 of the sequential steps taken to screen for relevant
networks, analyse them and classify them into topologies. We explored parameter combinations
for a three-node network defined in the form (F.11). The main criterion for choosing a viable
set of parameters was that they must produce a patterned steady state, i.e. a saddle-node
bifurcation on the same gradient as in the neural tube, defined as xin = e−s/0.15 where s
indicates dorsal-ventral neural tube position and ranges from 0 to 1. To avoid trivial effects
from shifts in the boundary position we set a further constraint that the bifurcation must occur
at a position s in the same range as in the neural tube network, 0.165 ≤ s ≤ 0.17. More
specifically networks were required to be monostable below s = 0.165, with high levels of x1;
and bistable beyond s = 0.17, with one state having high x2 and the other high x1 (with
“high” being a concentration value above 0.6). For each network meeting these criteria, we
then proceeded to calculate the MAPs in the same way as for the neural tube network (as
explained in Supp. C), and the jump time. We selected networks that have boundaries sharper
than a certain threshold, set by requiring the boundary to be no wider than 0.2 fractional
neural tube units; boundary widths were calculated based on their transition time obtained
from simulating the SDEs. To simulate the neural tube network from (E.1) in the screen
we used the standard parameters from that network, reverting to the original version [Cohen
et al., 2014] with maximal concentrations of unity for all TFs in order to ensure comparability
with the networks produced by the screen. We removed all terms relating to Irx3, as these
do not contribute substantially to the dynamics of transitioning from a pMN to a p3 steady
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Define regulatory
interactions that will

be analysed.

Select networks
that pass success

criteria

All TFs may regulate each other via activation,
repression or not at all. x1 and x2

may receive input from the gradient or not

System produces a
bifurcation at same signal
levels as WT neural tube

Bifurcation results in
system transitioning from
monostability to bistability

Use interaction parameters to define topologies

Define position of all fixed points

Calculate:
- Boundary precision

- Curvature of the MAP

Steady states must be
- High x1 and low x2
- High x2 and low x1

Characterise systems
meeting success criteria

Determine boundary sharpening mechanisms for each
topology and compare parameter sets

Calculate:
- Transition time from initial steady state to saddle point

- Separation speed between saddle point and steady state
- Minimum action path between steady state and saddle point

- Variation of concentration within high x2 domain

Compare successful
systems and classify

into distinct topologies

Figure S14: Schematic of steps for systematic screening. We desgined the screen to first
identify parameter sets that describe networks that generate a sharp boundary at a specific
location within a gradient. This ensures that the resulting networks are comparable with each
other. The parameter sets that pass this filter are then analysed by defining the characteristics
relevant to forming a precise boundary. Finally, we classify the parameter sets into topologies.

state. We further set production and degradation rates to be equal to unity in the screen as
these simply scale the jump time and do not affect the results.

In analysing the results of the network screen we quantified the curvature of the MAP as the
largest perpendicular distance of any point on the MAP from the straight line between steady
state and transition point, normalised by the total length of this line. We refer to this value
throughout the text by the shorthand “curvature” as it gives a quantitative indication of how
much the MAP deviates from the shortest path. This metric was normalised by the saturation
values of each species to control for possible distortions due to differing typical concentration
levels of different molecular species. Additionally we also tried a Euclidean metric in logarithmic
concentrations and obtained similar results.. The curvature was measured at s = 0.25 and
the robustness of the results with respect to this choice of neural tube position was tested by
comparing with multiple other locations, with qualitatively similar results in all cases (data not
shown).
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In the analysis we also characterised networks by the strength of the contribution of the
third node, which does not receive direct signal input. We quantified this by taking the value of
x3 at the steady state and transition point (saddle point) and multiplying each by parameters
for the repression or activation of nodes 1 and 2 by node 3, taking the maximum value. The
multiplication by representative concentration levels of the third node was motivated by the
fact that when those concentrations are small, even large interaction parameter values have
small net effects.

Networks with a low third node contribution are effectively two-node networks, and turned
out to have low MAP curvature. This led us to explore other mechanisms for generating
sharp boundaries. Geometrically, in the space of expression levels (phase space), the speed at
which the steady state and saddle point separate as a function of neural tube position s is a
plausible contributor to boundary sharpness because even if the fluctuations around the initial
steady state favour a jump, such a jump will be inhibited by a large separation between steady
state and transition point. High signal sensitivity should thus lead to rapidly increasing jump
times and hence to sharp boundaries. To measure signal sensitivity we focussed on a fixed
position (chosen as s = 0.25) along the neural tube, beyond the saddle-node bifurcation, and
calculated the Euclidean distance between steady state and transition point. We then used
this as a simple quantitative indication of signal sensitivity. We checked the robustness of this
measure by performing the measurement for different fixed positions along the neural tube,
and also at variable locations chosen as the centre of the boundary region for each network;
we found qualitatively similar results in every case (data not shown).

When a network had a high signal sensitivity, this typically resulted in the steady state (the
expression profile) of x2 varying, i.e. changing within a domain of the steady state pattern.
We quantified this heterogeneity by the standard deviation of x2 within the region of high
x2 expression. This confirmed (see Fig. S15) that sharp 2D networks have a higher level of
heterogeneity than 3D networks, which use the curvature of the MAP to generate sharpness.

Characterisation of topologies

Finally we analysed the topologies of the networks resulting from the screen. To sort networks
into topologies we used thresholds to identify whether nodes 1 and 2 receive significant signal
input, and for each of the TF nodes whether it significantly activates or represses the other
TFs. Starting with the former, within the input parameter range [10 : 400] for nodes 1 and
2, we took any parameter 30 < kin to be a positive input; lower values were classified as
lack of input. This cutoff was chosen by testing a range of different values and imposing the
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Figure S15: Histogram of variation of the expression level of the second node within its domain
of expression for 3D (red) and 2D (blue) networks; inset shows example variation of expression
levels across a domain. 3D networks can generate domains of expression with more constant
levels of expression (lower domain variation) than 2D networks, which rely on signal sensitivity
to create sharp boundaries. Green line represents the WT network.

constraints that we want to neither classify the majority of networks as having two inputs
(which would provide no information on the input topology, as could happen if the cutoff
was too low) nor assign any network to a topology with no inputs (which would not make
biological sense and would occur when the cutoff is too high). For interactions between nodes
we took into account not only the parameters kji but whether each parameter in conjunction
with the actual states of the system would have a noticeable effect. We evaluated interactions
by considering the contribution of an interaction given the highest level that the effector node
can take. Accordingly, we consider an interaction with 0.3 < |kji|max(xi) to be significant,
otherwise we classify it as negligible. The maximum was taken over all steady states for
all neural tube positions. The cutoff value of 0.3 was chosen by systematic inspection of a
representative number of networks, for which we compared the dynamics with and without
individual interactions and assessed whether these were qualitatively identical or not. To assess
the robustness of the cutoff value, we varied it within a range up to an order of magnitude larger
and found that the results of our characterisation of network topologies remained qualitatively
the same (data not shown).

With this approach we classified all the 3D network parameter sets into topologies, de-
termined those that occurred most often (Fig. S16) and plotted the boundary precisions they
generate (Fig. 5H). The results indicated that although some topologies are more frequently
represented amongst networks producing a sharp boundary, there is no single topology that
ensures sharpness. Some networks (such as 1–4 in Fig. S16) prevented the boundary from
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becoming very imprecise, but even within these network topologies the range of sharpness was
large (Fig. 5G,H & Fig. S16 & Fig. S17). This leads to the conclusion that the dynamical prop-
erties generated by the network, rather than the structure of the network determines boundary
precision. Indeed, we confirmed by analysing each topology separately that the main indicators
of sharpness are the two mechanisms identified in the main text: curvature of transition path
and signal sensitivity (Fig. S17). Nonetheless, a network’s topology can substantially bias the
dynamics towards high MAP curvature, and hence towards sharpness.
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Figure S16: List of topologies that generate sharp boundaries, sorted in the same order as
Fig. 5H. Red arrows indicate activation, black lines with blunt ends represent repression.
Mutual repression between the first and second nodes (1 and 2) is a consistent feature, as well
as the input from the signal to the first node. For the sharpest networks, a mutual repression
between the first and third nodes is observed.
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Figure S17: MAP curvature plotted against signal sensitivity with boundary width indicated by
colouring. The data are equivalent to those shown in Fig. 5D, but here each plot represents an
individual network topology and networks with wide boundaries have been included in the plots
(deep blue). Network topologiess are ordered as in Fig. S16. While signal sensitivity does not
exhibit obvious differences between topologies, network topologies 1–4 have consistent high
curvature.

Effect of signalling noise on boundary precision

We explored what effect noise in the signal gradient would have on the precision of boundaries
generated by the mechanisms revealed in the screen. To this end, we simulated networks recov-
ered from the screen using a noisy signal as an input. For this we have used Ornstein-Uhlenbeck
noise and explored systematically a range of fluctuation timescales and noise amplitudes (see
Eq. F.12). As is commonly done we use a log version to avoid negative values, i.e. we write
the fluctuating signal input as sOU(t) = exp(`(t)) where `(t) evolves in time as

d`(t) = θ (ln(s)− `(t)) dt+ σdW (t) (F.12)

`(0) = ln(s) (F.13)

The variables are the standard terms for Ornstein-Uhlenbeck processes: θ is the inverse corre-
lation time of fluctuations, σ is the noise amplitude, W is a Wiener process, s is the constant
Gli input in the original model. We compared the boundary widths generated by simulations
using these noisy gradients with those in which the signal was constant, for otherwise identical
parameter sets (Fig. S18). This revealed that noise in the signal had relatively limited effects
on the precision of boundaries for moderate levels of noise. Moreover, the same relative sharp-
ness of boundaries for the different networks was found in the simulations with a constant and
a noisy signal. Above a level of signal noise all sharpness was lost, as anticipated. Thus the
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determining factors for boundary sharpness are curvature and signal sensitivity, as the networks
that maximise these two parameters produce the sharpest boundaries with or without 
signal noise (Fig. S18).

Correlation time (θ) = 100

Correlation time (θ) = 10-0.5

Correlation time (θ) = 10-1

Correlation time (θ) = 10-1.5

Correlation time (θ) = 10-2

Amplitude (σ) = 10-2 Amplitude (σ) = 10-1.5 Amplitude (σ) = 10-1 Amplitude (σ) = 10-0.5

Figure S18: Effect of different levels of noise in the gradient on boundary precision. The
boundary widths produced by systems recovered from the computational screen are plotted for
simulations with no noise in the signal gradient (x axis) and with noise in the signal gradient
(y axis). Colour labels networks from least (blue) to most (red) curvature. The behaviour
of the noise in the signal has been modelled as an Ornstein-Uhlenbeck process, with the
indicated amplitudes and correlation times. The same network parameter values were used for
the simulations with and without signal noise. The analysis shows that the noise in the signal
has relatively small effects on the precision of boundaries, except when the noise in the signal
is so extreme that all sharpness is lost (bottom right plots).

Comparison with Drosophila GAP gene and Eye Imaginal disc net-
works.

We compared the networks recovered from the computational screen with those described
for anterior posterior patterning of the Drosophila embryo and eye imaginal disc [Verd et al.,
2017, Graham et al., 2010]. Both these systems have been characterised extensively such that
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we have sufficient knowledge of the network to perform our analysis [Akam, 1987, Ingham,
1988, Sánchez and Thieffry, 2001, Manu et al., 2009, O’Neill et al., 1994, Rebay and Rubin,
1995]. We added intrinsic noise to the original models from [Verd et al., 2017, Graham et al.,
2010] using Langevin equations and an Ω that was chosen to result in fluctuations without
leading to ergodicity. For the GAP gene system we used the parameters and equations as
described in [Verd et al., 2017], for the imaginal disk network we used the Mathematica code
provided as supplementary in [Graham et al., 2010]. We inspected the configurations in gene
expression fluctuations near relevant steady states.

HbKr

Gt

Bc 190 200 210 220

0

50

100

150

200

250

Hunchback

G
ia
n
t

Figure S19: (Left) GAP gene network for the anterior boundary between Kruppel and Giant.
The network has the same topology as the most frequently recovered network identified by our
screen, with a difference only in the input (dashed link). This differences does not affect the
dynamics as it only alters how the network interprets a change in signal. (Right) Black dots
represent multiple simulations and illustrate fluctuations near the high-Giant / low-Kruppel
steady state (red point). To transition to the low-Giant and high-Kruppel steady state (green
point) the system must reach the transition point (purple point). The fluctuations in gene
expression space are coerced into the Hunchback dimension (x axis), decreasing the probability
of a stochastic fluctuation of the system reaching the transition point.

The architecture of the transcription circuits that comprise the GAP gene network [Verd
et al., 2017] match closely those found in our computational screen (Fig. S16). As predicted by
our computational screen, we can identify role for specific links between network components in
the formation of GAP gene boundaries. In particular, for the anterior boundary between Giant
and Kruppel, if we remove Knirps, which is not expressed in either of these domains, we find
one the most common topologies recovered from our screen, with the correspondence Kruppel
– x1, Hunchback – x2, Giant – x3 (Fig. S19). In this case, Hunchback and Giant display
mutual exclusivity and the graded expression profile of Giant suggests that signal sensitivity
is used to sustain the sharp boundary; this is similar to the role played by Pax6 (x3) in the
neural tube GRN. An interesting difference is that while Hunchback affects the direction of
fluctuations in gene expression space, it does not change in concentration and simply alters
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the dynamics of the transition (Fig. S19).
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Figure S20: (Top) Multiple instances of one of the top topologies for boundary sharpness found
in our computational screen are contained in the Drosophila eye disc network. This network
is composed of several interactions and mediates the transition between Yan-on and Yan-off
states. The configuration of inputs from the signal (Erk) is different to our topologies (dashed
lines) but this does not affect the dynamics. (Bottom) Fluctuations near the Yan-off state (red
point) for different projected views corresponding to the networks shown. The fluctuations
are configured in directions that are not aligned with the transition point (purple point). This
configuration decreases the possiblity of a cell reverting to a Yan-on state after the wave of
Erk has shifted the system to a Yan-off state. Note that for Mae and miR-7 the inhibitions
of Yan happen through direct interactions, thus where noted we show the fluctuations for the
variable tracking the Inhibitor:Yan complex (Mae:Yan or miR-7:Yan).

The differentiation pattern of the eye imaginal disc also relies on cross-repressive interac-
tions [O’Neill et al., 1994, Rebay and Rubin, 1995, Graham et al., 2010]. The expression of
Yan, downstream of RTK signalling distinguishes between differentiated and undifferentiated
precursors in the eye disc as the furrow migrates. We inspected the network proposed to
achieve this [Graham et al., 2010] by focusing on three-node networks that involved Yan and
two other components in cross-repression with Yan. This approach resulted in three versions
of a network topology found frequently as one with high curvature in our screen, with the
mappings: (1) Yan – x1, miR-7 – x2, Mae - x3, (2) Yan – x1, Mae – x2, PntP1 – x3 and
(3) Yan – x1, miR-7 – x2, PntP1 – x3 (Fig. S20). Simulations also indicate that the dy-
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namics of these networks configure gene expression fluctations to decrease the probablity of
a noise driven transition (Fig. S20). The bistable network facilitates a sharp switch between
steady states, ensuring that cells only transition from a Yan-off to a Yan-on state when Yan
is sufficiently activated by Erk signalling. Once the wave of Erk has passed, the dynamical
curvature established by the network ensures that cells do not transition back to a Yan-on
state (Fig. S20). Thus both Drosophila embryo and eye imaginal disc networks appear to have
adopted network structures that are compatible with precision enhancing mechanisms.
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Figure S21: Analysis of gene expression in embryos(A) Plot illustrating the concentrations
of Nkx2.2 and Olig2 for all cells analysed. This highlights that the majority of cells are negative
for both TFs and also that very few cells co-express both TFs. (B) Criteria to determine the
identity of each cell by using the levels of Nkx2.2 and Olig2; colours indicating cell assignment
as Olig2 (red), Nkx2.2 (green) and neither (blue) are consistent throughout the figure. The
concentration of Pax6 is not used for classification. (C) Positional limits along the neural tube
for each cell type. Cells that express neither Olig2 nor Nkx2.2 are classified based on their
position as they can be ventral floor plate cells (black) or more dorsal progenitors. Cells that
have mismatching values of concentration and position are classified as exceptions in Cyan
(D) Examples of classified embryos of increasing age, illustrating the accuracy of the approach
for determining cell type.
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Figure S22: Examples of boundaries determined by the Gaussian process classifier.
The red lines indicate the computed boundary position, and correspond to the image locations
where the probability of being a p3 or pMN cell is 0.5. Blue lines close to the p3-pMN boundary
delimit the area identified as the boundary region, where the probability of being a p3 cell is
in the range 11% to 89%. By measuring the area between the two blue curves and dividing
by the width of the embryo we are able to quantify the width of the boundaries. In turn by
obtaining the average position of the red line, we are able to calculate the boundary position.
Note that these boundaries are trained from the data and therefore require no user input as
to the position of the boundary
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WT O2e33−/− Pax6−/−

5 5150 - 250 µm 17
250 - 350 µm 13 13 3
350 - µm 16 11 8

Table S1.




