

Fig. S1. Micronuclei are retained in either the TE or ICM of blastocysts. To confirm that micronuclei can be present in the TE or ICM of bovine blastocysts, we examined an additional TE marker, Annexin A2 (ANXA2), by immunofluorescence. (A) The specificity of the ANXA2 antibody was first tested in a highly-pure Day 28 immortalized rhesus placental (iRP) first trimester trophoblast cell line, iRP-D28A (Rosenkrantz et al. 2021), by staining the nuclei with Hoechst (blue) and immunolabeling with Cytokeratin-7 (KRT7), a pan-trophoblast marker. (B) Robust ANXA2 (pink) expression was observed in the iRP-D28A cells that co-localized with KRT7 expression (yellow). (C) Maximum intensity projection (MIP) confocal images of bovine blastocysts with clear separation of the TE and ICM and stained with Hoechst revealed multiple nuclear structures resembling micronuclei (10X). (D) Several of these micronuclei were contained within the ICM and negative for ANXA2 expression, (E) which was more apparent at higher magnification (20X).

A
BUB1B targeting sequences: (BUB1B MAO \#1; BUB1B MAO \#2)
5'-GTTGCAGAAGGAGGCCCAGG[CGATCTGAGGCTCTGAAGAAAGGCC]CGC...
...GGGAGGACGAGGCCCTGAGCCGGGAATGCAG[G(ATG)GCGGCGATGCAGAAGGAAA]GGG- 3'

Fig. S3. BUB1B MAO design and knockdown efficiency. (A) DNA sequences of two nonoverlapping MAOs designed to target the ATG start site (shown in red, BUB1B MAO \#1) and the 5^{\prime} UTR (depicted in blue, BUB1B MAO \#2) of BUB1B. (B) BUB1B knockdown efficiency was assessed in synchronized MDBK cells following 48 hours of treatment with $3 \mu \mathrm{l} / \mathrm{ml}$ of colcemid alone (non-transfected), the Std control MAO, or BUB1B MAO \#1 via immunofluorescence. BUB1B protein expression was analyzed in DAPI stained (blue) MDBK cells. Note the lack of or reduced number of BUB1B positive foci (red) in the BUB1B MAO \#1 treated cells compared to the controls; Scale bars $=10 \mu \mathrm{~m}$ (top) and $=20 \mu \mathrm{~m}$ (bottom). (C) Bar graph showing the percentage of MDBK cells in metaphase with BUB1B expression after colcemid treatment (black) or transfection with different concentrations (2,4 , and $8 \mu \mathrm{M}$) of the Std control MAO (blue) or BUB1B MAO \#1 (red). While the number of cells exhibiting BUB1B positive foci was similar between the nontransfected and Std MAO controls, a dose-dependent significant decrease ($\mathrm{p}<0.05$) in BUB1B expression was observed following BUB1B MAO \#1 treatment using the Generalized Estimating Equations approach and Tukey's test for multiple comparisons. (D) Western Blot of BUB1B and α-Tubulin expression in untreated MDBK cells and following either mitotic shake-off or colcemid treatment all in triplicate to confirm reduced BUB1B expression at the protein level. (E) Quantitative RT-PCR (RT-qPCR) of normalized $B U B 1 B$ expression in STD Control MAO versus BUB1B MAO injected bovine zygotes showing efficient BUB1B knockdown likely from negative feedback of inhibiting $B U B 1 B$ mRNA translation. Mean CNRQ values \pm SEM were compared using the Mann-Whitney U-test; * $\mathrm{p}=0.007$.

Fig. S4. Comprehensive assessment map of mitotic, of gene expression patterns in embryos. Heat cell cycle, developmentally-regulated, and cell survival genes assessed in individual BUB1B MAO \#1 versus non-injected and Std Control-injected MAO bovine zygotes via single-cell microfluidic RT-qPCR. Cycle threshold (Ct) values were normalized to the most stable reference genes (RPL15 and GUSB) across embryo groups and presented as the average. Gray squares indicated no expression, whereas yellow, white, and purple squares correspond to low, medium, and high expression, respectively. The range of expression levels for each gene with the minimum (Min.) and maximum (Max.) values is shown to the right of the heat map.

Table S1. Sequencing statistics of all embryonic and control samples. A table depicting the number or percentage of reads following de-multiplexing of embryonic (with embryo stage) and fibroblast samples at each step of the post-sequencing process, including adaptor removal, repeat masking, genome mapping, and quality assessment. The sequencing kit used and whether single- or paired-end is also included.

Click here to download Table S1

Table S2. List of all genes with primers analyzed by RT-qPCR in zygotes. A table of the genes analyzed by microfluidic qRTPCR in non -injected bovine zygotes and following Std Control MAO versus BUB1B MAO \#1 microinjection. Included is the sequence of the forward and reverse primer used for amplification as well as the NCBI accession number of each gene.

Gene Symbol	Forward primer sequence ($5^{\prime}->3^{\prime}$)	Reverse primer sequence ($5^{\prime}->3^{\prime}$)	NCBI Accession\#
ACTB	CCTTCCTGGGCATGGAATCCT	GGCTTTTGGGAAGGCAAAGG	NM_173979.3
ADAMTS18	GCAGCGGATTAAACCACGATTA	ATCGGTAATGCAGGGAGCTG	NM_001192486
ADAMTS20	CAGGCAGGAAGCCTTAGTGA	TCTGTGGGAATACTTCGCCG	NM_001206093
ANAPC10	AACAGATTCCCCTTGCGGAG	CCACCAATTCAAGTTGCCGA	NM_001080357.2
ANAPC2	GTATTTCCAGGACCAAGCCAGC	GCGGCTCAGCCACAACTCT	XM_003584964.2
APPBB1	GATGAGACGCTGAAGCTGGT	ACGTAGGCAAAGTCCCTTCC	NM_001075186
ATM	GCCAGAATGTGAGCAACACC	AGCCAAGAACACCCACCAAA	NM_001205935
AURKA	AGCATGGATGAGTGGGTGAAT	TCTGTCCATGATGCCTGAGTC	NM_001038028.1
AURKB	TCCGACCCCTTACTCTCTCTC	AGGAACGCTTTGGGATGTTG	NM_183084.2
B2M	GCACCATCGAGATTTGAACATT	GCAGAAGACACCCAGATGTTG	NM_173893
BAD	TCAGGGGCCTCATTATCGGG	GGAAGCCCCTTGAAGGAGACG	NM_001035459.1
BAX	TAACATGGAGCTGCAGAGGATGA	CAGCAGCCGCTCTCGAA	NM_173894.1
BCL2	GAGGCTGGGACGCCTTTGT	GGCTTCACTTATGGCCCAGAT	NM_001166486.1
BRCA1	CCTACCTTGCAGGAAACCAGT	AATTGGTCTTGGCCTTGGCT	NM_178573.1
BRCA2	AGTTTCCGCTGTCTTCTCCC	GGTTTCTGTCGCCTTTGCAG	XM_002684277.2
BUB1	GCAGCTGGTGATAAAGGGGAA	AAAACTCCGATTCTCCGCGA	NM_001102011.2
BUB1B	AGCTACAAGGGCGATGACC	CTTTGTTCCCCTTTATCACCAGC	NM_001145173.1
BUB3	ATGGGACCACGCTTGCAATA	TGGTTAGGTGGACTTGGGTT	NM_001076177.1
CASP2	CTGTAGTCCCGCCGTTGAG	CATCGCTCTCCTCGCATTTG	NM_001144104.1
CASP3	ACGAAAATACTGGCATGGCCT	TCCGTTCTTTGCATTTCGCC	NM_001077840.1
CCNA1	ССТСАССТСТTACCCCCAGA	GCTTACTGCTCTGGTTGGAGT	XM_005194120.1
CCND1	AGATGTGACCCGGACTGCC	GGAAAACACCAGGACAGTGAG	NM_001046273.2
CCNE1	TTGCTGCTTCCGCCTTGTAT	TTGCTTGGGCTTTGTCCAGC	NM_001192776.1
CD81	ATTTCGTCTTCTGGCTGGCA	CGATAAGGATGTAGATGCCCACA	NM_001035099
CDC20	TGGAGCGGCGAGTTTAAGTT	CCATGGGAACGTCGTCAGT	NM_001082436.2
CDH18	AATGAAGATAACACAGCCAGCA	TGCTGAGAGAGGGGATTCCA	NM_001076837
CDK1	GCGGATAAAGCCGGGGTCT	GCTCTGGCAAGGCCAAAATC	NM_174016.2
CDK2	ATACACTGCGTTCCATCCCG	TACCACAGAGTCACCACCTCG	NM_001014934.1
CDKN1A	GGAGACCGTGGTTGGGAGA	CGTTTGGAGTGGTAGAAATCTGT	NM_001098958.2
CDX2	ACGTGAGCATGTATCCCAGC	TTCCTTTGCTCTGCGGTTCT	NM_001206299.1
CENPE	CCGTGGAGGTTTCTGACGTA	CAGGCGCTTCTTCTCTGTGA	XM_010805939.3
CENPF	CCTATTGCGGGAAAAAGAGCA	CTCGTTTAGCTTTAGCTCTTTCAG	NM_001256586.1
CENTRIN2	CGTCCGGGATGGCCTCTAA	AATGGCAGGCACTAAACCGA	NM_001038515.1
CHEK1	CAACTTATGGCAGGGGTGGT	ATGTAGCAGAGCTAGAGGAGC	NM_001098023.1
CHEK2	GGGTTTATCGCCACTCCGCT	ACCCATTTCTCTGAAGATCCGAAA	NM_001034531.1
CREBBP	CAAACTGGAGGGCAGCAGAT	CATCTGAGGCATGTTTGGCA	NM_001164022.1
CRTAC1	GACAAGCCCGTGTGTGTCAA	AAGGAGTGAGGGAGGCCACA	NM_001205325
CSPP1	TCCCTTCCTATTGGTGAGAGGT	GTCTGTTCCCGTACATCCTGTT	NM_001193015.2
CTNNB1	AGAACACAAATGACGTGGAGA	GACCTTCCATCCCTTCCTGTT	NM_001076141.1
CYP3A7-3A51P	GGCCATGGAGCTAATCCTGA	TCCATATAGATAGAGGAGCACCAGA	NM_001099367
DIAPH1	CACTAGCAACGCAAACCTGG	TTGAGGGAGACACGAAGGGA	XM_001787599.3
DYSF	ATGTGGGTCGACCTGTTTCC	CGCAGGAAAAACCTTCTGGC	NM_001102490
ECT2	ACGAGAGACAGAAGATTGCCA	GAGTATGTGAACCAAGAACCCA	NM_001097573.1
EOMES	GACAACTATGATTCATCCCATCAGA	TGATGGATGGGGGTGTCTCT	NM_001191188.1
ERLEC1	GCCAGTCACTACCAGGATCG	CCACCAACCAACACCCTCTT	NM_001191407.1
FSD1	AAGCTCAAGTTGGAACGGCT	CCAGCGCTTGAACCCATTAC	NM_001081518
FZD2	TCCACGGAGAGAAGGGCATA	CCCAGAAGGTTGGGCATGAT	XM_003587455.5
GSG2	ACAACAACTGCTGGGGTGAA	CTTCAAGGCGGGGGTGTTAT	NM_001076544
GUSB	TCCGCAGGGACAAGAATCAC	TGGGCAATCAGCGTCTTGAA	NM_001083436
HAGHL	CTGCCCCCTGAGACAAAGG	TGGTCGTTGTAAGGCTCCAC	NM_001075540
HAUS6	AGGTATCAAATGGTGATTTTGGCA	ATGCCACTGTGCATAGGACT	XM_002689566.6
INCENP	AGAACGCCTTCGCAGAAGAA	GTCTTTCTGCGGGACAACCT	XM_584352.7
IQCG	CGACCTACGCTTCGAGTACC	GGCTTCCAGACCTTCTTCCA	NM_001038195
KAT2A	TGTGAGCACCCTTTGGCTGA	AACGAGCCTTACTTGGGGAAG	XM_001788901.3
KAT2B	TTCGGGTGGGAAGGTTTCTG	TTCTGGTCAGCAGGCTTGAG	XM_613744.7
KCTD1	AATGGGCACAGAAGCAGCAA	ATATTGGGCCGACTGTCCTGG	NM_001080360
KNL1	CGGCGAGTAACTTTCGTCCT	AAACTTTTCTGAGCCCAGCG	XM_002690821.6
MAD2L1	GAGAGGTCCTTGAAAGATGGCA	AGACTTTTCTCTGGGTGCACTAT	NM_001191513.1
MAP2K6	TTGCATGAAGATTGCACGCC	TCGCTTCTTGCCTTTCGACT	NM_001034045
MCL1	CGGTGATTGGCGGAAGCG	AACCCATCCCAGCCTCTTTGTT	NM_001099206.1
MIS18A	TGCATCTTGCTACGCTGTGT	GTTGAGCGAACATCCTGTGC	NM_001098010
MYH2	AAGAGCCCTTGGAATGAGGC	GCTGAACTCAGAGGTCCTTGT	NM_001166227
NANOG	CGGACACTGTCTCTCCTCTTC	CCATTGCTATTCCTCGGCCA	NM_001025344.1
NPM2	GTGCTGTTGCTCAGTACGATT	ATGGTGTCTTACTGCCTCTTC	NM_001168706.1
OOEP	CGCCCGAGCTGAGAAAATGG	GGTGGGGAAAGGCAGAGATT	NM_001077869.2
PLK1	GTATGGCCTCGGGTATCAGC	TCGCGCTCGATGTACTGTAG	NM_001038173.2
POGZ	ACTACTACAGCTGGCAATTCTT	ATGGGCGAGGTCACTAGTTTG	NM_001163190.1
PPIA	GGATTTATGTGCCAGGGTGGTGA	CCAGGACCTGTATGCTTCAAAATG	NM_178320.2
PPP1CA	TGCCAAGAGACAGTTGGTGA	TGCCCATACTTGCCCTTATTCT	NM_001035316.2
PRKCQ	CCCAACCTTCTGTGAGCACT	CATTCATGCCACATGCGTCG	NM_001192077
PRKRIP1	AGAACTGGCTGCACTCCCA	GCAGTCAGCTCCTCCACATC	NM_001079641
RCC2	CTCCTCATCACCACGGAAGG	CAGGACCAGCGTGTGGTTAG	NM_001101911.2
ROBO2	ACAGATGATCTTCCACCACCAC	AAGTTGGCTGCTTGCTGTCT	XM_024993907.1
RPL15	GGCAGCCATCAGGGTGAG	CATCACGTCCGACTGCTTCT	NM_001077866.1
RPS6K1	GTTTCAGACACAGCCAAGGACC	ACAGAGCGCCCTTGAGTGAC	NM_001083722.1
RPS6KA5	ACCCCTTCTTCCAGGGTCTG	CAGGCTCCAGTCGGGTAAAT	NM_001192023.1
RSP6KA4	CACTCTTCACTACGCTGCCC	TTGTTGAAGGCGTGGAAAGTG	NM_001191400.1
SCPEP1	ACACATGGTTCCTTCCGACC	CAGCCCAGGCCATCCTATTC	NM_001045909
SDHA	TCCTGCAGACCCGGAGATAA	TCTGCATGTTGAGTCGCAGT	NM_174178
SEPT6	CCGATATAGCTCGCCAGGTG	CCAAACCTGTCTCTCCCACG	NM_001035430
SIRT2	GTCACGGGATAGAGCAGTCG	TCTGAGTCCTGAGCCTCCTG	NM_001113531.1
SMIM8	GCCTTTAAAAAGGAGCCGCC	AAGCCATTACAGGTTTGTTAGGT	NM_001081531
SMTN	GTTCTACCGCTGTCTGGTCC	CAGTCCACCAGCATCCGTG	NM_001076879
SPICE1	GCTATCGGGAAACGACAAGATGT	CGCCTGCGAGGAAAATCAAC	NM_001038117.2
STX3	TTTAGCAACTGAGCGAACAGG	CATACCCTCATCCCCTCTGC	NM_001101971
SYCP1	CCCGCCTTTTCCGAGTAGAT	TCCTCCCGAAGTCTGAGGTT	XM_003581953.2
SYCP3	CCAACAAGAGCAAAGGCAGAAG	TGCTGCTGTTACATGAGAGAAGAT	NM_001040588.2
SYT1	GACCATGAAAGATCAGGCCC	CAGCAGCTGGTTATTCTGGA	NM_174192
SYT2	CTTGCGGCAAAGACACTCC	CAGAGGGACAGCGGGGT	XM_024976596.1
TBC1D7	CGGACTTGGCCTAGGACTC	CAACTCCACGAAACCCCACT	NM_001015643
TEX14	ACGAAGTCCTGAAGGCGAAC	GATGGCTTCTACGAGTTCTTTCG	NM_001192568.1
TUBA1C	TTCTCCCCCGGACTCCTTAG	ATGCACTCACGCATAACGGA	NM_001034204
TUBG1	ACCAGCATCTCCTCGCTCTTT	CAGTAAGGCAGATGAGGGTCC	XM_001790429.3
UBC	GTCCGGACCGGGAGTTC	TCACAAAGATCTGCATTGTCAATTA	NM_001206307.1
WRAP73	GTACCTGGCTTCCTGCATCC	CACTCGAGGTGCTGGATCTG	NM_001193006
YWHAZ	ACCTACTCCGGACACAGAACA	ATCATATCGCTCAGCCTGCTC	NM_174814

Movie 1. Live-cell fluorescent imaging of early cleavage divisions. Bovine zygotes were microinjected with fluorescently labeled modified mRNAs to mCitrine-Actin (green) and mCherry-Histone H2B (red) to distinguish blastomeres and DNA, respectively, and early mitotic divisions visualized by live-cell confocal microscopy. Note the micro-/multi-nuclei in embryos \#3, \#4, and \#11, chromatin bridge in embryo \#1, lack of syngamy in embryos \#3 and \#11, multipolar divisions in embryos \#1, \#3-6, \#11, and \#15, and production of empty blastomeres in embryos \#5 and \#15.

Movie 2. MCC-deficient embryos struggle to divide. A bovine zygote following BUB1B MAO microinjection attempted to divide by forming multiple cleavage furrows, but never successfully completed cytokinesis.

Movie 3. Multipolar divisions are observed in MCC-deficient embryos. Certain bovine zygotes were able to undergo cytokinesis even with BUB1B knockdown, but these divisions were abnormal with multipolar cleavage.

Movie 4. MCC deficiency causes blastomere asymmetry. Besides abnormal divisions, BUB1B-injected bovine embryos often exhibited blastomere asymmetry following the multipolar cleavage.

