
Figure S1

Fig. S1. Expression of *Foxp4* in adipose tissues at cold exposure, by *pMSCV-Cre* or *SMA-CreER*.

- (A) Western blot for FOXP4 protein in BAT and sWAT of mice under room temperature (22°C) and one-week cold exposure (4°C). Three independent experiments were replicated.
- (B) mRNA levels of *Foxp4* expression in BAT and sWAT from mice of (A). n, 3.
- (C) Oil Red O staining for 8-day white adipocyte differentiation from *pMSCV-Cre*transfected SVF of sWAT from $Foxp4^{fl/fl}$ mice.
- (D) mRNA levels of adipogeniesis markers in cells of (C). n, 3.
- (E) FOXP4 protein expression in SVF cells from $Foxp4_{Sma}^{Ert\Delta/\Delta}$ mice. Three independent experiments were replicated.

Figure S2

Fig. S2. *In vitro* beige adipocyte differentiation with *Foxp4* deficiency by *pMSCV*-*Cre*.

- (A) mRNA levels of fibroblast cell marker genes in beige differentiation from SVF with *Foxp4* inactivation induced by *pMSCV-Cre*.
- (B) mRNA levels of fibroblast cell marker genes in beige differentiation from SVF of $Foxp4_{Sma}^{Ert\Delta/\Delta}$ mice with Foxp4 inactivation induced by 4-OH tamoxifen in cultures.
- (C) mRNA levels of general adipogenic markers in beige differentiation from SVF of $Foxp4_{Sma}^{Ert\Delta/\Delta}$ mice with Foxp4 inactivation induced by tamoxifen injection.
- (D)mRNA levels of general adipogenic markers in beige differentiation from SVF of $Foxp4_{Sma}^{Ert\Delta/\Delta}$ mice with Foxp4 inactivation induced by 4-OH tamoxifen in cultures.

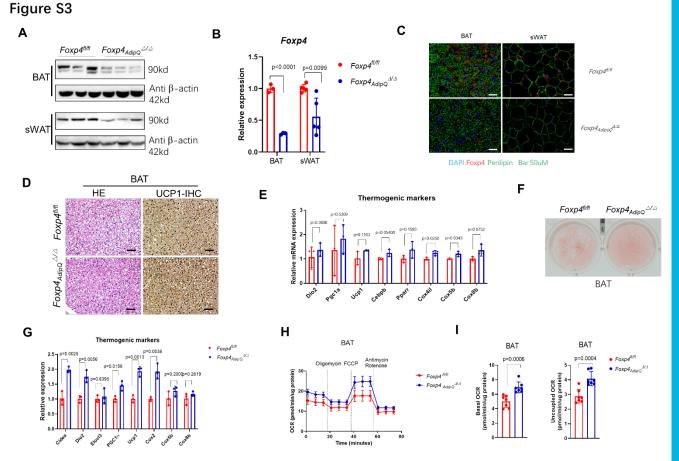


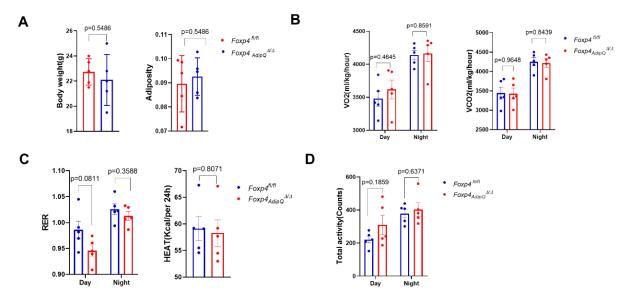
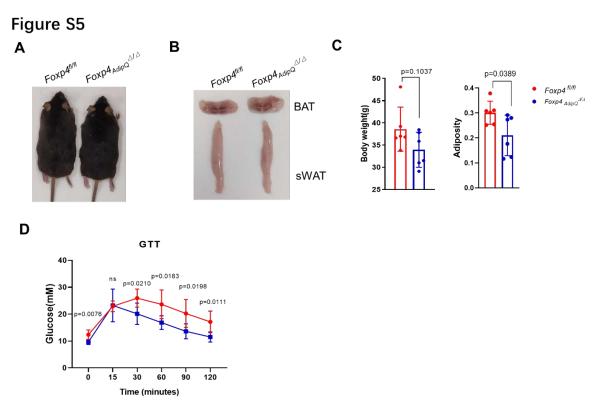
Fig. S3. Thermogenesis in BAT of $Foxp4_{Adip}Q^{\Delta/\Delta}$ mice.

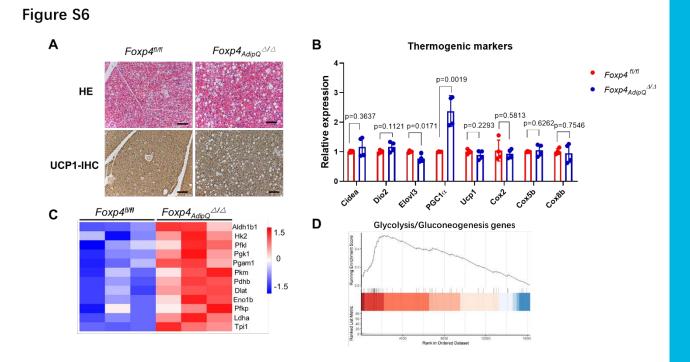
- (A) Western blot for FOXP4 protein in BAT and sWAT of $Foxp4^{fl/fl}$ and $Foxp4_{AdipQ}^{\Delta/\Delta}$ mice at age of 2 months old. Three independent experiments were replicated.
- (B) Assessment of *Foxp4* mRNA expression in BAT and sWAT from mice by qPCR. n, 3~5.
- (C) Immunofluorescence examination for FOXP4 on sections from BAT and sWAT of 2-month-old $Foxp4^{fl/fl}$ and $Foxp4_{AdipQ}^{\Delta/\Delta}$ mice.
- (D) H&E and immunohistochemical staining (IHC) for UCP1 on BAT sections from $Foxp4_{AdipQ}^{\Delta/\Delta}$ mice. Three independent experiments were replicated.
- (E) mRNA levels of thermogenic and mitochondrial markers in BAT.
- (F) Oil Red O staining 8 day post brown adipocyte differentiation from BAT-SVF of $Foxp4^{fl/fl}$ and $Foxp4_{AdipQ}^{\Delta/\Delta}$ mice at age of 8 weeks. Three independent experiments were replicated.
- (G) mRNA levels of thermogenic markers for brown adipocytes in (F). n, 3.
- (H) Oxygen consumption rate (OCR) was measured for brown adipocytes from (F).

Uncoupled respiration was recorded after oligomycin inhibition of ATP synthesis, and maximal respiration following stimulation with carbonyl cyanide 4-(trifluoromethoxy) phenylhydrazone (FCCP). n,7.

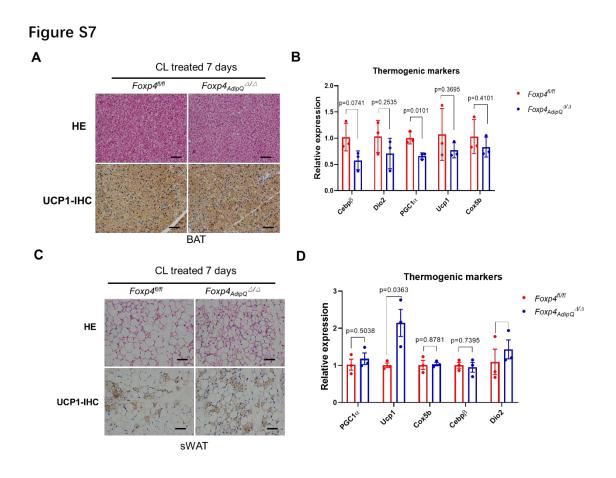
(I) Quantitative analysis of basal and uncoupled OCR in (H). n, 7.

Figure S4

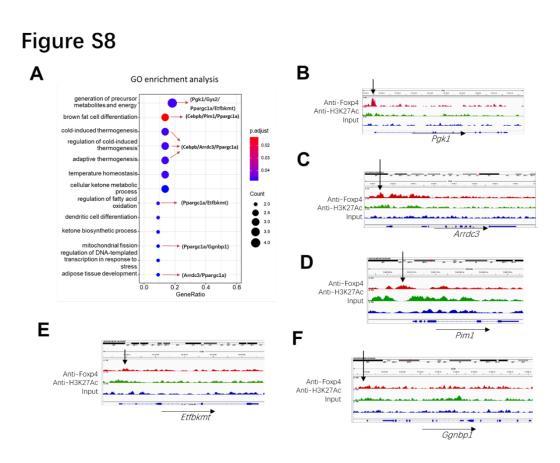




Fig. S4. Metabolic analysis for $Foxp4_{Adip}Q^{\Delta/\Delta}$ mice.

- (A) Body weight and relative adiposity of $Foxp4^{fl/fl}$ and $Foxp4_{AdipQ}^{\Delta/\Delta}$ mice during day and night in metabolic cages at age of 3 months old. n, 5.
- (B) Quantification of O_2 and CO_2 consumption of mice under room temperature. n, 5.
- (C) RER and heat production of mice. n, 5.
- (D) Total activity of mice. n, 5.



- (A) Dorsal view of representative $Foxp4^{fl/fl}$ and $Foxp4_{AdipQ}^{\Delta/\Delta}$ mice of after 8-week feeding with HFD at age of 2 months.
- (B) Representative fat depot of BAT and sWAT from mice of (A).
- (C) Body weight and relative adiposity of HFD-fed mice of (A). n, 6.
- (D)GTT of HFD-fed mice. n, 6.


Fig. S6. BAT thermogenesis in $Foxp4_{Adip}Q^{\Delta/\Delta}$ mice upon cold exposure.

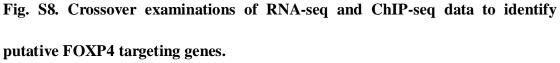

- (A) H&E and immunohistochemistry (IHC) staining for UCP1 protein on BAT sections from $Foxp4_{AdipQ}^{\Delta/\Delta}$ mice after one-week cold exposure at 4°C. Three independent experiments were replicated.
- (B) Thermogenesis in BAT of (A) assessed by qPCR with selective markers (*Cidea*, *Dio2*, *Elovl3*, *PGC1α*, *Ucp1*, *Cox2*, *Cox5b*, *Cox8b*). n, 3.
- (C) Heatmap depicting the mRNA levels of glycolytic genes in beige adipocytes from sWAT in $Foxp4_{AdipQ}^{\Delta/\Delta}$ mice after one-week cold exposure at 4°C.
- (D) Gene set enrichment analysis of glycolytic marker gene expressions in sWAT of (C).

Fig. S7. Thermogenic activation in CL-316,243-stimulated $Foxp4_{Adip}Q^{\Delta/\Delta}$ mice.

- (A, C) H&E and IHC staining for UCP1 on BAT (A) and sWAT (C) sections from mice stimulated with CL-316,243 for 7 days. Three independent experiments were replicated.
- (B, D) qPCR analysis for thermogenic gene expressions in BAT (B) and sWAT (D) from CL-316,243-stimulated mice. n, 3.

(A)GO enrichment analysis for several putative FOXP4-targeting genes.

(B-F) ChIP-seq profile showed the FOXP4 binding sites (black arrows) within Pgk1,

Arrdc3, Pim1, Etfbkmt, Ggnbp1 gene regions.

Table S1. Primers for qPCR and genotyping

		primer for qPCR
E arres 4	F	GTGTCTGTGGCCATGATGTC
Foxp4	R	TCTTTGGGCTGCTGTTTTCC
Adrb3	F	GGCCCTCTCTAGTTCCCAG
	R	TAGCCATCAAACCTGTTGAGC
Uml	F	ACTGCCACACCTCCAGTCATT
Ucp1	R	CTTTGCCTCACTCAGGATTGG
PCCla	F	AGCCGTGACCACTGACAACGAG
PGC1a	R	GCTGCATGGTTCTGAGTGCTAAG
Cabu	F	TGGACAAGAACAGCAACGAG
Cebp a	R	TCACTGGTCAACTCCAGCAC
Cabro	F	ACGACTTCCTCCCGACCTCT
Cebpβ	R	CGAGGCTCACGTAACCGTAGT
Dio2	F	CAGTGTGGTGCACGTCTCCAATC
D102	R	TGAACCAAAGTTGACCACCAG
Prdm16	F	CCACCAGCGAGGACTTCAC
Pramio	R	GGAGGACTCTCGTAGCTCGAA
Correl 2	F	GCAAGCATAAGACTGGACCAAA
Cox2	R	TTGTTGGCATCTGTGTAAGAGAATC
Cox4il	F	ACCAAGCGAATGCTGGACAT
Cox4ll	R	GGCGGAGAAGCCCTGAA
R active	F	AGAGGGAAATCGTGCGTGACA
β -actin	R	CACTGTGTTGGCATAGAGGTC
F1 12	F	TCCGCGTTCTCATGTAGGTCT
Elovl3	R	GGACCTGATGCAACCCTATGA
Com5h	F	GCTGCATCTGTGAAGAGGACAAC
Cox5b	R	CAGCTTGTAATGGGTTCCACAGT
Comph	F	TGTGGGGATCTCAGCCATAGT
Cox8b	R	AGTGGGCTAAGACCCATCCTG
DD (D.	F	GCGTACGGCAATGGCTTTAT
PPARα	R	GAACGGCTTCCTCAGGTTCTT
ע) עם	F	GGAAAGACAACGGACAAATCAC
ΡΡΑ <i>R</i> γ	R	TACGGATCGAAACTGGCAC
	F	CAGCGTCATGGTCAGTCTGT
Cox7a1	R	AGAAAACCGTGTGGCAGAGA
C^{1}	F	TGCTCTTCTGTATCGCCCAGT
Cidea	R	GCCGTGTTAAGGAATCTGCTG

	_			
Rgs2	F	GAGAAAATGAAGCGGACACTCT		
	R	GCAGCCAGCCCATATTTACTG		
CD137	F	CGTGCAGAACTCCTGTGATAAC		
	R	GTCCACCTATGCTGGAGAAGG		
Them26	F	ACCCTGTCATCCCACAGAG		
Inem20	R	TGTTTGGTGGAGTCCTAAGGTC		
	F	GGCAGGCAGACGAATGTTC		
Tbx1	R	TTGTCATCTACGGGCACAAAG		
C 140	F	TTGTTGACAGCGGTCCATCTA		
<i>Cd40</i>	R	CCATCGTGGAGGTACTGTTTG		
E	F	CCTGTAACCCCAGAACTCCA		
Ear2	R	CAGATGAGCAAAGGTGCAAA		
V11.11.2	F	AGAATTGGTTGCTGCAATACTCC		
Klhl13	R	AAGGCACAGTTTCAAGTGCTG		
Slc27a1	F	CTGGGACTTCCGTGGACCT		
<i>SIC2/01</i>	R	TCTTGCAGACGATACGCAGAA		
primer for genotyping				
Foxp4-Floxed	F	TGGAGGGACTGGGATTAGAAC		
1°0хр4-1°юхей	R	ACGGGAGGCTGAACAACAC		
Cre	F	TTTCCCGCAGAACCTGAAGA		
	R	GGTGCTAACCAGCGTTTTCGT		
Pdgfra-Luc				
Pdgfrα-promoter	F	CAGAGGGCAGGCATTTGGTAGT		
i ugitu-promotei	R	GCTTACTGGGACGAACACCA		