
In this supplementary document, we theoretically show that
averaging morphogen concentrations over a spatial region (such
as cell areas) can shift the effective readout position compared
to point-like readout, and we derive the corresponding shift ∆x
analytically for isotropic and for rectangular cell shapes. We
focus on exponential morphogen gradients here as they arise in
systems with diffusion-driven morphogen transport and uniform
linear degradation, but note that the developed formalism can
be applied directly also to other gradient shapes. Moreover, the
impact of spatial correlation of the kinetic cell parameters on the
positional error, the choice of the kinetic parameter distribution
and the effect of cell number in the source domain are discussed.

Readout in a continuous domain

Consider an exponential morphogen concentration gradient

C(x) = C0 exp
[
−x

λ

]
with concentration C0 at the source at x = 0, and decay length
λ. Assuming a continuous readout based on a threshold con-
centration Cθ = C(xθ), a positional identity boundary forms at
position

xθ = λ ln

[
C0

Cθ

]
. (S1)

This mechanism allows for gradient-based tissue patterning,
where individual patterning domains are delineated by different
boundary positions xθ resulting from different readout thresholds
Cθ.

Readout in a tissue of isotropic cells

For morphogen readout in a cellular tissue, we consider several
different cases in a unified description. Cells can either sense
the morphogen concentration at a singular point, averaged over
a spatial region with radius r about that point (which may or
may not be smaller than a cell), or as an average concentration
over the entire cell area. We denote this readout region by Ω
(Fig. S1). The average concentration in Ω is

⟨C⟩ =
∫
Ω
C(x) dΩ∫
Ω
dΩ

.

Assuming that the averaging domain is circular (i.e., the cell
areas have no orientational bias) in a two-dimensional tissue
cross section or surface, we can approximate Ω as a disk with
radius r about a center point (x0, 0):

Ω =
{
(x, y) | (x− x0)

2 + y2 < r2
}
.

readout region Ω

∆x

C(x) = C0 exp
[
−x

λ
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Fig. S1. Averaging an exponential morphogen concentration 
(blue) over a local region such as the cell area leads to a larger 
readout concentration (green) than taking the concentration at 
the middle of the region (red). To compensate for this effect, 
the readout position shifts downhill (away from the source) by 
a distance ∆x from xθ to x0.

In the case where the concentration is averaged over the entire
cell area, r is the effective cell radius. The average concentration
thus becomes

⟨C⟩ = C0

πr2

∫
Ω

exp
[
−x

λ

]
dΩ

=
C0

πr2
2πrλ exp

[
−x0

λ

]
I1

( r

λ

)
where

In(z) =

∞∑
k=0

(z/2)2k+n

k!(k + n)!

is the modified Bessel function of the first kind for integer n.
The series converges very quickly if r ≪ λ, such that higher
order terms in r/λ can be dropped. Substitution and expansion
of the Bessel function yields

⟨C⟩ = C(x0)
2λ

r
I1

( r

λ

)
= C(x0)

∞∑
k=0

(r/2λ)2k

k!(k + 1)!

= C(x0)

[
1 +

1

8

( r

λ

)2

+
1

192

( r

λ

)4

+O
(( r

λ

)6
)]

.

Thus, the mean concentration ⟨C⟩ is larger than the one in
the middle of the readout domain, C(x0), and this deviation
increases with larger readout regions and shorter gradient decay
lengths.
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Fig. S2. Readout boundary shift due to spatial averaging as a 
function of the size over which the morphogen concentration is 
averaged. The purple line shows the isotropic case with a 
circular averaging region (Eq. S2); the orange line represents 
the case with rectangular cells (Eq. S4).

If threshold-based readout operates on the averaged concen-
tration, we must have Cθ = ⟨C⟩. Therefore,

C(xθ)

C(x0)
= exp

[
−xθ − x0

λ

]
=

∞∑
k=0

(r/2λ)2k

k!(k + 1)!
.

The location of domain boundaries is shifted down the concen-
tration gradient by the distance

∆x = x0 − xθ = λ ln

[
∞∑

k=0

(r/2λ)2k

k!(k + 1)!

]
(S2)

as shown in Fig. S1. Notably, the shift is independent of both
the gradient amplitude C0 and the concentration threshold Cθ

for an exponential gradient. Therefore, it is the same for all
readout positions in the pattern if the averaging radius r and
the decay length λ are spatially invariant, such that all domain
boundaries are shifted equally by this averaging effect. Eq. S2
is plotted in Fig. S2.

Using the power series expansion of the natural logarithm,

ln[1 + x] =

∞∑
k=1

(−1)k+1 x
k

k
= x− x2

2
+O

(
x3) ,

the boundary shift can be expanded to

∆x = λ

[
1

8

( r

λ

)2

− 1

384

( r

λ

)4

+O
(( r

λ

)6
)]

.

For a mean cell radius of r = 2.5µm and a gradient decay
length of λ = 20 µm, the shift is ∆x ≈ 0.039 µm.

By combining Eqs. S1 and S2, we find the mean domain
boundary position at

x0 = xθ +∆x = λ ln

[
C0

Cθ

∞∑
k=0

(r/2λ)2k

k!(k + 1)!

]
. (S3)

Readout in a tissue of rectangular cells

We now derive the downhill shift ∆x also for rectangular cell
areas, effectively rendering the problem one-dimensional. This
scenario corresponds to a tissue composed of cuboidal cells in

which the morphogen gradient forms in a direction perpendicular
to one of the cells’ axes. In this case,

Ω = {(x, y) | |x− x0| < r} .

Averaging over the cell area thus gives

⟨C⟩ = C0

2r

∫
Ω

exp
[
−x

λ

]
dΩ

= C(x0)
λ

r
sinh

[ r
λ

]
Requiring again that the readout threshold be the average
concentration, Cθ = ⟨C⟩, yields

C(xθ)

C(x0)
= exp

[
−xθ − x0

λ

]
=

λ

r
sinh

[ r
λ

]
.

The shift in the readout position then follows as

∆x = x0 − xθ = λ ln

[
λ

r
sinh

( r

λ

)]
(S4)

which expands to

∆x = λ

[
1

6

( r

λ

)2

− 1

180

( r

λ

)4

+O
(( r

λ

)6
)]

.

Eq. S4 is plotted in Fig. S2. For a mean cell radius of
r = 2.5 µm (which in this case corresponds to the half-width of
the rectangular cells) and a gradient decay length of λ = 20 µm,
the shift is ∆x ≈ 0.052 µm.

In analogy to Eq. S3, the mean domain boundary position is
found at

x0 = xθ +∆x = λ ln

[
C0

Cθ

λ

r
sinh

( r

λ

)]
.

in tissues composed of rectangular cells.

Impact of spatial correlation on the positional
error

In the main article, we assumed uncorrelated morphogen kinet-
ics. Here, we demonstrate how spatial correlation affects the
positional error. First, we consider total correlation, where all
three kinetic parameters (p, d, D) are the same for all cells, but
are still varied between different simulations (different tissues).
In this limiting case, morphogen gradient variability occurs
only between tissues, not within them. The positional error
is significantly greater than with independent cells, and the
square-root scaling is lost (Fig. S3, green triangles), because
to the morphogen gradient, the tissue effectively appears like a
homogeneous continuum with uniform properties.

Next, we consider, as a second extreme case, a maximal de-
gree of cell-to-cell correlation in the kinetic parameters, while
preserving their probability distributions within the tissue. The
kinetic cell parameters (pi, di, Di) are drawn individually and
independently for each cell, but are then sorted along the pat-
terning axis and assigned to the cells i, prior to solving the
reaction-diffusion equation. Sorting does not affect the pattern-
ing precision appreciably, independent of the ordering (Fig. S3).
In comparison to zero correlation, sorting slightly reduces the
positional error—an effect that is most pronounced for larger
cell diameters. But even with this maximal level of spatial
cell-to-cell correlation, the square-root scaling of the positional
error holds. Intermediate levels of spatial correlation can be
expected to yield positional errors lying in between the curves
for zero and maximal cell-to-cell correlation.
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Fig. S3. Impact of correlation on the positional error at different readout positions and cell diameters. Green 
triangles represent total correlation (all cells have equal kinetic parameters), yellow triangles represent no correlation (as presented 
in the main Fig. 4F). Blue (red) triangles correspond to the case with maximal spatial correlation at given cell-to-cell variability 
CVp,d,D, where the cell parameters were drawn from log-normal distributions and then sorted in descending (ascending) order. 
All simulations were repeated n = 103 times and the mean positional error ± SEM is plotted.

Choice of the kinetic parameter distribution

In the main article, we assumed log-normally distributed mor-
phogen kinetics. In this section, we show that our results are
largely independent of the probability distribution assumed for
the kinetic parameters, provided that it meets certain physio-
logical criteria:

• The morphogen production rates, degradation rates and
diffusivities must be strictly positive. This rules out a
normal distribution.

• The probability density of near-zero kinetic parameters
must vanish quickly, as otherwise no successful patterning
can occur. For example, a tiny diffusion coefficient would
not enable morphogen transport over biologically useful dis-
tances within useful time periods. This rules out a normal
distribution truncated at zero, because very low diffusivities
would occur rather frequently for such a distribution.

We repeated the simulations shown in Figs. 2A,B and 4F with
a gamma distribution in place of the log-normal distribution.
Among other distributions that are conceivable, a gamma dis-
tribution with appropriate shape parameter α and inverse scale
parameter β fulfills the above criteria. In order to recover the
mean and variance of the kinetic parameters, we set αk = 1/CV2

k

and βk = CV2
k/µk, where CVk is the coefficient of variation and

µk the mean value of a specific kinetic parameter k. As can
be appreciated from Fig. S4, the results are not significantly
altered by the specific choice of probability distribution, and our
conclusions remain valid. The scaling exponents are consistent
within statistical errors.

Effect of cell number in the source domain on
gradient precision

In the main article, we showed that patterning precision increases
with narrower cells and wider sources. These effects are coupled—
wider sources will be composed of more cells if the average cell
diameter remains constant. In this section, we demonstrate that
the positional error is mainly dominated by the cell diameter
rather than the source size, and that the found scaling σx ∼ 1/Ls

(Eq. 6) is largely due to higher cell numbers in wider sources.
Increasing the number of cells in a source of fixed length

improves the precision of the morphogen gradient parameters

0:1 1 10 100
0:001

0:01

0:1

1

0:503

CVk = 0:3

CVA = 0:5

A

Mean cell diameter —‹ [µm]

D
ec

ay
le

ng
th

va
ria

bi
lit

y
C
V
–

k = d
k = D
k = p; d;D

0:1 1 10 100
0:01

0:1

1

0:480

CVk = 0:3

CVA = 0:5

B

Mean cell diameter —‹ [µm]

A
m

pl
itu

de
va

ria
bi

lit
y
C
V
0

k = p
k = d
k = D
k = p; d;D

Average
concentration

Centroid of
the cell

Random point Cilium readout

Alternative readout strategies:C

0 10 20 30 40
0

5

10

15

20

25

30

CVp;d;D = 0:3
CVA = 0:5

ff x
=
— ‹

D

Mean cell diameter —‹ [µm]

Po
si

tio
na

le
rr

or
ff
x

[µ
m

]

—x = 12—–
—x = 6—–
—x = 3—–

Fig. S4. Gradient variability and positional error 
under gamma-distributed morphogen kinetics. All sim-

ulations were repeated n = 103 times and the mean values ± 
SEM are plotted. A,B The same scaling laws for the gradient 
variability found for the gamma and log-normal distributions 
(Fig. 2A,B) are consistent. C Different readout s trategies (iden-
tical to Fig. 4A). D Square-root scaling of the positional error 
with the cell diameter is found also with gamma-distributed 
morphogen kinetics. Symbol colours in D correspond to the 
different morphogen sensing strategies in C.

according to the asymptotic relationship

CVλ,0 ∼
√

µδs

Ls
∼

√
1

Ncells
,

where Ncells is the number of cells in the source domain
(Fig. S5A,B). They thus approximately follow the law of large
numbers. The positional error decreases analogously with in-
creased cell number in a source of fixed length (Fig. S5C). If,
on the other hand, the number of source cells is fixed but the
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Figure S5: Effect of source length and number of source
cells on gradients precision. A,B In a source of fixed
length Ls, there is less variability in the gradient parameters
λ and C0 as the number of constituting cells increases. C The
positional error decreases with more cells in a source of fixed
length, but saturates beyond about 5 source cells. D,E The
gradient parameters become more variable in wider sources
consisting of a fixed number of cells. F The positional error
mildly increases in wider morphogen sources with fixed cell
count. Colours in C,F correspond to readout strategies shown in
Fig. S4C. All data points show mean values ± SEM from n = 103

simulations. Model parameters: µδp = 5 µm, CVp,d,D = 0.3,
CVA = 0.5, µλ = 20 µm.

source size increases, the variability in the gradient parameters
increases according to power laws (Fig. S5D,E),

CVλ,0 ∼ µα
δ and CV0 ∼ µβ

δ (S5)

with exponents α = 0.510 ± 0.005 (Fig. S5D, blue curve) and
β = 0.43±0.02 (Fig. S5E, blue curve), suggesting again CVλ,0 ∼√

µδs/Ls. A source composed of a fixed number of cells yields
only a mildly greater positional error if its constituent cells
have a larger average diameter, however (Fig. S5F). In these
simulations, the mean cell diameter in the patterning domain was
fixed. Thus, in order to achieve high spatial gradient precision,
a morphogen source must have a large number of cells with
small diameters, but the cell count is more decisive than the
source length.

To study the competition of cell sizes between the source and
patterning domain, we then changed the mean cell diameter
separately in both subdomains, retaining the mean diameter in
the other at a constant value. No further appreciable increase in
gradient precision takes place once the mean cell diameter in the
source subceeds the one in the patterning domain (µδs < µδp ,
Fig. S6). The mean cell diameter in the source has a limited
impact on gradient precision (Fig. S6, pink symbols) compared
to the mean diameter in the patterning domain (Fig. S6, yellow
symbols). Overall, this suggests that a large number of narrow
cells in both the source and patterning domain, but mainly in
the latter, is advantageous for patterning precision.

Fit parameters

In Table S1, we list all functional relationships used to fit the
data shown in the main article and this supplementary document,
together with the fit parameters and their standard errors (SE).
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Fig. S6. Separate effects of the mean cell diameter in the source and patterning domains on the positional 
error. A,B,C Change of positional error at µx = 3µλ = 60 µm, as the mean cell diameter is varied only in the source (µδ = µδs , 
pink), only in the pattern (µδ = µδp , yellow) or in both simultaneously (µδ = µδs = µδp , blue), but is fixed elsewhere (at 2, 5, 
10 µm in A, B, C, respectively). All simulations were repeated n = 103 times and the mean values ± SEM are plotted. Model 
parameters: Ls = 5µδs , CVp,d,D = 0.3, CVA = 0.5.
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Table S1. Summary of the fit functions and their parameters. All lengths are in micrometres.

Figure Model Legend entry a SE(a) b SE(b)

2A lnCVλ = a lnµδ + b k = D 0.507 0.002 −4.528 0.004
k = p, d,D 0.510 0.004 −4.199 0.008

2B lnCV0 = a lnµδ + b k = p 0.497 0.003 −4.528 0.004
k = d 0.457 0.004 −2.847 0.006
k = D 0.387 0.006 −3.403 0.008
k = p, d,D 0.472 0.005 −2.396 0.007

2E CVλ = b k = D — — 0.0249 0.0001
k = p, d,D — — 0.0343 0.0001

2F CV0 = a/Ls + b k = p 1.087 0.038 0.095 0.002
k = D −0.158 0.010 0.070 0.001
k = p, d,D 0.870 0.025 0.160 0.001

2G CVλ = b k = d — — 0.0238 0.0002
k = D — — 0.0246 0.0001
k = p, d,D — — 0.0338 0.0001

4D σx = aµλ + b µx = 3µλ average 0.097 0.004 3.4 0.1
µx = 3µλ centroid 0.087 0.004 3.4 0.1
µx = 3µλ random 0.096 0.004 3.7 0.1
µx = 6µλ average 0.083 0.003 4.9 0.1
µx = 6µλ centroid 0.083 0.003 4.9 0.1
µx = 6µλ random 0.083 0.003 5.1 0.1

4D σx = aµ2
λ + b µx = 12µλ average 0.0014 0.0001 7.8 0.1

µx = 12µλ centroid 0.0014 0.0001 7.8 0.1
µx = 12µλ random 0.0014 0.0001 7.9 0.1

4E σx = a/Ls + b µx = 3µλ average 12.5 0.9 4.75 0.05
µx = 3µλ centroid 12.6 0.8 4.74 0.05
µx = 3µλ random 12.3 1.0 5.01 0.05
µx = 6µλ average 11.4 0.6 6.01 0.03
µx = 6µλ centroid 11.3 0.6 6.01 0.03
µx = 6µλ random 10.9 0.6 6.20 0.03
µx = 12µλ average 8.9 1.0 8.01 0.06
µx = 12µλ centroid 8.9 1.0 8.01 0.06
µx = 12µλ random 8.5 1.0 8.24 0.05

4G σx = a
√
µx + b average 0.429 0.003 1.86 0.06

centroid 0.429 0.003 1.85 0.06
random 0.421 0.003 2.17 0.07

5D CVx = a/
√

Lp + b 1.28 0.02 −0.039 0.002

S5A CVλ = a/
√
Ncells k = D 0.0778 0.0006 — —

k = p, d,D 0.1082 0.0005 — —

S5B CV0 = a/
√
Ncells + b k = p 0.293 0.009 0.019 0.004

k = d 0.325 0.003 0.011 0.001
k = D 0.171 0.004 0.014 0.002
k = p, d,D 0.490 0.006 0.019 0.003

S5C σx = a/Ncells + b µx = 3µλ average 4.9 0.2 3.48 0.06
µx = 3µλ centroid 4.9 0.2 3.47 0.06
µx = 3µλ random 4.8 0.2 3.73 0.07
µx = 6µλ average 4.2 0.1 4.94 0.06
µx = 6µλ centroid 4.2 0.1 4.95 0.05
µx = 6µλ random 3.9 0.1 5.25 0.05
µx = 12µλ average 3.6 0.2 7.10 0.10
µx = 12µλ centroid 3.6 0.2 7.10 0.10
µx = 12µλ random 3.4 0.2 7.40 0.10

S5D lnCVλ = a lnLs + b k = D 0.520 0.004 −5.38 0.01
k = p, d,D 0.510 0.006 −5.01 0.02

S5E lnCV0 = a lnLs + b k = d 0.42 0.01 −3.48 0.03
k = D 0.53 0.01 −4.52 0.05
k = p, d,D 0.43 0.02 −3.08 0.07
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