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Fig. S1. The relationship between the covariance of a gene expression trajectory and its Jacobian. (A) Schematic  of  a single-cell 
RNA-seq dataset arranged by each  cell’s  developmental  (pseudo-)  time.  (Left) Visualization of dataset in two collective gene-
expression dimensions. Gene expression matrix at the pseudotime indicated by the rectangle, and its corresponding covariance matrix. 
(Center) Schematic of a generative model (F ⃗) that could yield the gene expression matrix in (A), and its connection to the Jacobian (J). 
In this model, δg is the deviation of the gene expression vector, g⃗ from the fixed point, g⃗∗.  (Right) Snapshots of a collection of particles 
at steady state following the dynamical process defined by x˙ =−2x3 + x/2 + a and uniformly sampled noise for a = −1 (left), a = 0 
(center) and a = 1 (right).
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pseudotime inference (sample size 2000 cells) [2]. (B) Principal covariance eigenvalue (ω1) plotted as 
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peak of ω1 coincides with the minimum distance between m1 and its critical value.
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Fig. S11. Bifurcation characterization using Slingshot pseudotime algorithm. (A) Neutrophil development obtained 
by applying Slingshot to hematopoiesis scRNA-seq data [3]. Principal curves were approximated to 1000 points 
by setting approx points = 1000 in the slingshot function as increasing approx points further did not affect 
results. (B) Largest covariance eigenvalue (black) compared with a statistical null (gray, details in Section 4) in 
each 1000 cell pseudotemporal bin, shifted to have 0 min, using the Slingshot pseudotime ordering. Error bars of 
null are one SD. (C) Average expression of promyelocyte (blue) and myelocyte (gold) marker genes in Slingshot 
pseudotemporal bins [3]. SEM error bars are smaller than symbols. Light green line in (B-C) indicates peak of 
bifurcation window.
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Fig. S13. Distribution of gene expression for genes with the highest absolute weight in s⃗m. Red and blue 
indicate number of cells in each cluster (as in Fig. 5C) while gray indicates total.
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Appendix S1

1 The relationship between the Jacobian and the Covariance

Here, we outline the methodological framework that enables characterizing cell-fate transitions directly from scRNA-seq
snapshots of a cell’s transcriptomic state. A scRNA-seq measurement yields a transcriptomic matrix, where each row is a
different cell and each column is a different gene (Fig. S1, left). This data is often visualized via dimensionality reduction
algorithms, that reduce the 25, 000 dimensional gene space to two or three axes of variation, and sorted via parametric curve
fitting tools, that show how the cells vary as a function of a control parameter, such as developmental time (pseudotime).
Thus, one can compute statistics, such as the covariance C of the genes at a given pseudotime window.

Assuming that the underlying biochemical processes (1) are stochastic and Markovian and (2) occur at significantly faster
timescales (seconds to minutes) than the timescales over which transitions in cellular fates are observed (hours to days),
then the local time evolution of a cell’s transcriptomic profile is controlled by a single matrix, the Jacobian (J), where
Jij = ∂ġi/∂gj is the effect of the amount of gene j on the dynamics of gene i (Fig. S1, center). While J, in general, changes
with pseudotime, it relates to the covariance of gene expression at that pseudotime C through the continuous-time Lyapunov
equation [4],

JC+CJT +D = 0 (S1)

where D is the expected noise amplitude for individual genes and their interactions (derivation in Methods: Continuous time
Lyapunov equation for transcriptomic matrices) [5]. An important result from this relationship is that in the vincinity of bifur-
cations, the most salient properties of J, corresponding to its eigen-decomposition, are inferrable from the eigendecomposition
of C.

We demonstrate the intuition behind the Eqn. S1 using a one-dimensional toy-model (Fig. S1, right). The slope of the
potential function, drawn in red, provides the deterministic features of the system’s dynamics. Parameter regimes (a ≪ 0
and a ≫ 0) where the potential has highly convex curvature exhibit stable fixed points, while parameter regimes near the
bifurcation (a ∼ 0), that have much flatter curvature, exhibit instability. Stochastic simulations of the system (drawn as
open circles in Fig. S1– color corresponds to the value of the control parameter) demonstrate that owing to the reduction in
curvature of the underlying potential, the data is spread maximally near the bifurcation, and narrows on either side of it.

This simple one-dimensional toy model captures the essence of the ideas used in this paper. If a complex high-dimensional
dynamical system undergoes a bifurcation, then in its vicinity there must be, by definition, some direction in the high-
dimensional space with greatly enhanced fluctuations. Thus bifurcations, and regions of multistability, can be located
by finding the points along a developmental trajectory in transcriptomic space where the covariance eigenvalue spectrum is
dominated by a single principle mode. Moreover, the direction of those fluctuations (the corresponding covariance eigenvector)
is equivalient to the soft direction along which the system bifurcates (the corresponding eigenvector of the Jacobian), even
in the 25, 000 dimension transcriptomic space.

2 Methodological relationship to Dynamical Network Biomarkers

Chen et al. [6], developed the concept of a dynamical network biomarker (DNB), a group of genes that drive a critical
transition and are detectable from high dimensional gene expression datasets. In particular, they define an indicator function

I =
SDd · |PCCd|

|PCCo|
(S2)

where SDd is the average standard deviation of genes in the DNB, PCCd is the average correlation coefficient between genes
in the DNB, and PCCo is the average correlation coefficient between genes in the DNB and genes outside the DNB [6]. At
a critical state transition, or bifurcation, I is predicted to diverge, because SDd and |PCCd| become large, while |PCCo|
becomes small. Mathematically, the genes in the DNB correspond to those that have non-zero weight in the direction of the
transition, i.e., p⃗id ̸= 0, where p⃗d is the principal eigenvector of the Jacobian, while genes outside of the DNB have p⃗id = 0.
This prediction is qualitatively similar, but not the same as Eqn. 2. In particular, while both SDd and ω1 increase at a
bifurcation, they are not equivalent, as SDd measures the variance of each individual gene, while ω1 measures the variance
across all genes, and therefore accounts for corrections to the total variance due to covariances between genes in the network.
Therefore, for bifurcation detection, we focus solely on ω1, instead of incorporating correlations into the indicator as in
Eqn. S2.

As for determining which gene relationships are critical for the bifurcation, we take a similar approach to Refs. [6, 7], in
focusing on the correlations that approach ±1 at the bifurcation. This is justified via Eqn. 4, which yields that Rij → ±1 if

p⃗id ̸= 0 and p⃗jd ̸= 0. Interestingly, while we derived Eqn. 4 via the eigendecomposition of the covariance matrix, Refs. [6, 7]
derived the same result form the covariance matrix itself, providing additional support to this method.
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3 Bifurcations possibilities from two mutually inhibiting genes

At steady state, Eqn. 5 satisfies the quintic polynomial

g1 =
m1/kD(

m2/kD

g2
1+1

)2

+ 1
(S3)

which, depending on the parameter values, can have one real solution that is an attractor (e.g., if m1,2 = 1 and kD = 1)
or three real solutions, two attractors (nodes) and one repellor (saddle) (e.g., m1,2 = 1, kD = 1/3). By examining the null
clines,

g1(g2) =
m1/kD
g22 + 1

(S4)

g1(g2) =

√
m2

kDg2
− 1 (S5)

it can be deduced that varying m1, while fixing τ and m2 can yield a saddle-node bifurcation, as Eqn. S4 moves vertically
while Eqn. S5 does not, allowing for either node to merge with the saddle (Fig. S2A).

Conversely, varying kD, while fixing m1,2 and m2, can yield a pitchfork bifurcation, as both null clines move, such that
above the bifurcation value, all three real solutions remain (Fig. S2B). Solving Eqn. S3 computationally via the Python
function numpy.roots and plotting the real solutions (Fig. S2C-D) yields the bifurcations used in Fig. 2 and Fig. S5 [8].

4 Resampling principal eigenvalue

Given the transcriptomic matrix G =
{
g⃗1

T , g⃗2
T , . . . g⃗ng

T
}
, where g⃗i = {G1,i, G2,i, . . . , Gnc,i} and Gi,j is the expression of

the jth gene in the ith cell, we generate a null sample Gnull by drawing each of its entries Gnull
i,j randomly, with replacement,

from g⃗i. In Fig. S10Fig. 2,Fig. 3, we compute the principal covariance eigenvalue ωnull
1 for each of ns = 20 samples, and

compare this null distribution against the principal covariance eigenvalue of the data ω1. This resampling technique has
little impact on ω1 for unimodal distributions as the scale of ω1 is still determined by the system’s noise (Fig. S3 left and
right), but significantly decreases ω1 for multimodal distributions (Fig. S3 center) since the structure of the multimodality
is scrambled; thus we found it was an effective method for determining if a spike in ω1 is due to multimodality or increased
noise.

5 Noise induced transitions

To determine if a non-bifurcating noise-induced transition model [9, 10] could yield a similar covariance eigenvalue signature
to a bifurcation, we ran the 102 gene network model (Fig. 2A) in a regime of the dynamical system that had two fixed-points
(m1,2 = 1, kD = 1/3) at varying noise scales s (see Fig. S2 and Eqn. 22 for details). To ensure a transition, we initialized
all cells to populate the fixed point with higher g1. We found that for low noise values (1/s ≤ 0.01) the cells stayed near
their initial fixed point, yielding a unimodal distribution for g1 (Fig. S6A) and low principal covariance eigenvalue (Fig. S6B)
while for high noise values (1/s ≥ 0.02) the cells visited both fixed points, yielding a bimodal distribution for g1, and a high
principal covariance eigenvalue.

6 Effect of small errors

To better understand why the difference between ω1 and its corresponding null was significantly more apparent at τm than
τd (Fig. 3C), we exmained how small errors in the model parameters effect bifurcations. Specifically, we simulated the GRN
model (Eqn. 5) with different amounts of error in other parameters. For the saddle-node bifurcation, in which m1 is varied
while τD and m2 remain fixed, we perturbed m2 by small amounts from its bifurcation value m2c = 3. We found (Fig. S8A)
that the bifurcation was still largely detectable, and its eigenvalue still well distinguished from its null (Fig. S8B), at these
small errors. For the pitchfork bifurcation, in which kD is varied while m1 and m2 remain fixed, we perturbed m1 by small
amounts from its bifurcation value of m1c = 1. In this case, we found that the small perturbations biased the bifurcation
toward one of the branches (Fig. S8C). This bias significantly reduces the difference ω1 and its corresponding null (Fig. S8D).
Our analysis suggests that small errors in the one-to-many bifurcating dynamical systems that appears present at τD may
prevent it from being easily detectable, even when similar sized errors do not obscure the one-to-one bifurcation at ω1.

7 Pseudotime inference

7.1 Algorithm for generating the pseudotime labels in Weinreb et al

SPRING (x-y) positions, cell type annotations, and pseudotime ranks for the data presented in Fig. 3A-B were downloaded
from https://github.com/AllonKleinLab/paper-data/tree/master/Lineage_tracing_on_transcriptional_landscapes_

Development: doi:10.1242/dev.201280: Supplementary information

D
ev

el
o

pm
en

t •
 S

up
pl

em
en

ta
ry

 in
fo

rm
at

io
n

https://github.com/AllonKleinLab/paper-data/tree/master/Lineage_tracing_on_transcriptional_landscapes_links_state_to_fate_during_differentiation


links_state_to_fate_during_differentiation. The algorithms to generate these values are described in detail in Ref.
[3] (Supplementary Materials) and recapitulated here for completeness. Given the full in-vitro hematopoiesis transcriptomic
matrix (all cells and all genes), the SPRING positions in Fig. 3A plot were generated using the following procedure.

1. A filtered transcriptomic matrix was generated which did not include genes that

(a) had low variability as determined via the filter genes function with parameters (85,3,3) from https://github.

com/AllonKleinLab/SPRING_dev/blob/master/data_prep/spring_helper.py [1].

(b) correlated highly (R > 0.1) across all cells with any of the following cell cycle genes: Ube2c, Hmgb2, Hmgn2,
Tuba1b,Ccnb1, Tubb5, Top2a, and Tubb4b.

2. The top 50 principal components (PC) of the filtered transcriptomic matrix were computed.

3. 40,000 of the cells were selected randomly, and a k-nearest-neighbors (KNN) graph between those cells was constructed
using the top 50 PC of the filtered transcriptomic matrix and k=4.

4. X-Y positions of these 40,000 cells were generated using the ForceAtlas2 algorithm with 500 steps [11].

5. Positions for each of the remaining 90,887 cells were computed as the average position of their 40 nearest neighbors (in
the 50-PC space) among the initial 40,000 cells.

Cells were annotated with their cell types (cluster annotation in Fig. 3A) based on their position in the SPRING plot and
their expression (terminal cell fates) or lack of expression (pluripotent) of pre-selected marker genes. Specifically the marker
genes used to determine if cells were neutrophils were S100a9, Itgb2l, Elane, Fcnb, Mpo, Prtn3, S100a6, S100a8, Lcn2, and
Lrg1.

Neutrophil pseudotime rank was then determined by smoothly interpolating between cells in the pluripotent and neutrophil
clusters. The interpolation method used throughout this procedure is an iterative, diffusive process defined as

S0(X, b, i, k) =x⃗i (S6)

Sn(X, b, i, k) =bSn−1(X, b, i, k)

+
1− b

k

∑

j∈Kk(i)

Sn−1(X, b, j, k)

where x⃗i is a vector quantity defined for cell i, X = {x⃗1, x⃗2, . . . , x⃗nc
} is the matrix of this quantity for all cells, Kk(i) are the

cell indices of the k nearest neighbors of cell i, n > 0 is the number of iterations, and b is the neighbor weight (low b and
high n both yield high diffusion) [12]. The pseudotime ranking procedure is:

1. Cells are identified to be part of the neutrophil trajectory

(a) Let t⃗i be an indicator vector for the cell type of i; i.e. tij = 1 if cell i is type j and 0 otherwise. Let T ={
t⃗1, t⃗2, . . . , t⃗nc

}
be the corresponding matrix for all cells.

(b) Let K100 be the k-nearest-neighbor graph between cells for k = 100 using the top 50 PC.

(c) Let t̂i = S250(T, 0.1, i, 100) be the smooth cell type indicator.

(d) Let zi =
∑

j aj t̂ij be the weighted average cell type t̂i where the weights for each cell type (j) are

aj =





0.1 if neutrophil or pluripotent

−2 if megakaryocyte

−1 otherwise

(S7)

(e) Let c⃗i be a neutrophil trajectory indicator such that c⃗i = {1} if zi > Q0.6(z) and {0} otherwise, where Q0.6(z) is
the 60th quantile of z. Let C = {c⃗1, c⃗2, . . . , c⃗nc}.

(f) Let ĉi = S50(C, 0.1, i, 100) be the smoothed neutrophil trajectory indicator.

(g) Cells were considered part of the neutrophil trajectory if ĉi > Q0.6(ĉ) where Q0.6(ĉ) is the 60th percentile of ĉ.

2. The 61, 310 cells identified as part of the neutrophil trajectory are sorted

(a) Let p⃗i = {1} if a cell in the trajectory is pluripotent and 0 otherwise; i.e., it is an indicator for pluripotency.
P = {p⃗1, p⃗2, . . . , p⃗nc

} is the corresponding matrix for all cells in the trajectory.

(b) Let p̂i = S300(P, 0.1, i, 100) be the smoothed pluripotency indicator.

(c) The pseudotime of cell i is the rank (largest to smallest) of p̂i among all p̂.
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7.2 Pseudotime inference in the absence of metadata

To test if the neutrophil bifurcation characterization was dependent on the choice of pseudotime algorithm, we used the
Slingshot algorithm [2] to compute the pseudotime of each cell for its trajectory from the undifferentiated cluster to each
of the terminal fate clusters. The input to Slingshot were the cells’ cluster labels and their SPRING coordinates, and the
output was a probability, or weight, that a cell belonged to each undifferentiated-to-terminal-fate trajectory, as well as its
pseudotime along that trajectory. In Fig. S11A, we show the pseudotime of all cells that had weight > 0 for belonging to the
trajectory that led from undifferentiated cells toward neutrophils. Unlike the pseudotime method described in Section 7.1,
the origin of the trajectory does not coincide with the earliest sequenced cells, as time of sequencing and clonal barcode data
could not be input to Slingshot. Nevertheless, we obtain a clear bifurcation signature in the principal covariance eigenvalue
(Fig. S11B) at the point where promyelocyte gene expression decreases to 0 and myelocyte marker gene expression become
maximal (Fig. S11C). This result supports our belief that the bifurcation characterization does not depend on the specific
pseudotime calculation.

8 Determining the eigenvectors for analysis

In order to analyze the neutrophil trajectory in a native-space, we chose eigenvectors that were characteristic of the dynamics.
Since τm coincides with a well defined eigenvalue peak in the neutrophil trajectory, it was natural to use s⃗(τm) to aid in
visualizing the trajectory and further probe mechanisms. However, τ = 0 and τd coincide with transition points between
states (Fig. 5B), and mark the beginning of specific dynamics (i.e., the eigenvalue remaining constant, or increasing), and it
the lower correlation on the edges of the blocks in Fig. 5B suggests that the eigenvectors at those points had not equiilibrated
to their new positions. Therefore, we define τ̃0 and τ̃d as the pseudotime bins with the eigenvector closest to the eigenvector
at all other pseudotimes in that range, i.e.,

τ̃0 = argmin
0<=τ<τd

τd−1∑

t=0

||s⃗(τ)− s⃗(t)||2 (S8)

τ̃d = argmin
τd<=τ<τm

τm−1∑

t=τd

||s⃗(τ)− s⃗(t)||2 (S9)

and use these pseudotimes for downstream analysis.

9 Identifying clusters via Gaussian Mixture Models

As the distribution of gene expression projected onto s⃗(τm) exhibited bimodality (Fig. 5E, Fig. S12B), we used a Gaussian
Mixture Model to separate the two modes. Specifically, we fit G(τm), the normalized gene expression matrix at τm to a two
component Gaussian Mixture Model using the mixture.GaussianMixture function from the Python package scikit-
learn with n components = 2 and all other parameters set to their default [13]. We then used the predict function of
our trained model to generate cluster labels for cells at all pseudotimes. We found that cells were predicted to belong to the
same cluster (GMM-a) for τ ≲ τd (purple in Fig. 5F and Fig. S14). For τ ≳ τd, cells were split between the two clusters (red
and blue in Fig. 5F and Fig. S14).
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