Development

Cover: In zebrafish, osteoblasts are positioned distal to the mineralized matrix, allowing the simultaneous in vivo visualization of osteoblasts (red, osterix:mCherry) and calcified tissue (green, calcein staining). In this example, adjacent centra of a 20-dayold zebrafish axial skeleton are shown, with osteoblasts covering the neural and hemal arches. See research article by Spoorendonk et al. on p. 3765.

Although different organisms undergo diverse cell movements during gastrulation, studies of the mechanisms and regulation of cell adhesion, as reviewed here by Matthias Hammerschmidt and Doris Wedlich, reveal that different modes of gastrulation cell movements employ the same principles to regulate adhesion. See review on p. 3625.

REVIEW

3625 Regulated adhesion as a driving force of gastrulation movements Hammerschmidt, M. and Wedlich, D.

RESEARCH ARTICLES

3643 Pioneer longitudinal axons navigate using floor plate and Slit/Robo signals Farmer, W. T., Altick, A. L., Nural, H. F., Dugan, J. P., Kidd, T., Charron, F. and Mastick, G. S.

3655 The Wnt signaling regulator R-spondin 3 promotes angioblast and vascular development
Kazanskaya, O., Ohkawara, B., Heroult, M., Wu, W., Maltry, N., Augustin, H. G. and Niehrs, C.

3665 MEX-5 asymmetry in one-cell C. elegans embryos requires PAR-4- and PAR-1dependent phosphorylation
Tenlen, J. R., Molk, J. N., London, N., Page, B. D. and Priess, J. R.

3677 Mobilisation of Ca^{2+} stores and flagellar regulation in human sperm by S-nitrosylation: a role for NO synthesised in the female reproductive tract Machado-Oliveira, G., Lefièvre, L., Ford, C., Herrero, M. B., Barratt, C., Connolly, T. J., Nash, K., Morales-Garcia, A., Kirkman-Brown, J. and Publicover, S.

3687 Wnt signaling determines ventral spinal cord cell fates in a time-dependent manner Yu, W., McDonnell, K., Taketo, M. M. and Bai, C. B.
3697α-Endosulfine is a conserved protein required for oocyte meiotic maturation in Drosophila
Von Stetina, J. R., Tranguch, S., Dey, S. K., Lee, L. A., Cha, B. and Drummond-Barbosa, D.

3707 The development of motor coordination in Drosophila embryos Crisp, S., Evers, J. F., Fiala, A. and Bate, M.

3719 Wnt5a and Wnt11 interact in a maternal Dkk1-regulated fashion to activate both canonical and non-canonical signaling in Xenopus axis formation Cha, S.-W., Tadjuidje, E., Tao, Q., Wylie, C. and Heasman, J.

3731 Ovarian development in mice requires the GATA4-FOG2 transcription complex Manuylov, N. L., Smagulova, F. O., Leach, L. and Tevosian, S. G.

3745 Notch signaling maintains Leydig progenitor cells in the mouse testis Tang, H., Brennan, J., Karl, J., Hamada, Y., Raetzman, L. and Capel, B.

3755 Artery and vein size is balanced by Notch and ephrin B2/EphB4 during angiogenesis
Kim, Y. H., Hu, H., Guevara-Gallardo, S., Lam, M. T. Y., Fong, S.-Y. and Wang, R. A.

3765 Retinoic acid and Cyp26b1 are critical regulators of osteogenesis in the axial skeleton Spoorendonk, K. M., Peterson-Maduro, J., Renn, J., Trowe, T., Kranenbarg, S., Winkler, C. and Schulte-Merker, S.

DEVELOPMENT AND DISEASE

3775 Restriction of retinoic acid activity by Cyp26b1 is required for proper timing and patterning of osteogenesis during zebrafish development Laue, K., Jänicke, M., Plaster, N., Sonntag, C. and Hammerschmidt, M.

Longitudinal axons (red) of a chick embryonic hindbrain co-transfected with Shh and GFP (green) expression plasmids prior to axon outgrowth, from a study by Farmer et al. that analyses how longitudinal axon tracts are guided towards posterior regions of the developing central nervous system. See research article on p. 3643.

3789 Hedgehog signaling plays a cell-autonomous role in maximizing cardiac developmental potential
Thomas, N. A., Koudijs, M., van Eeden, F. J. M., Joyner, A. L. and Yelon, D.
3801 BMP signaling negatively regulates bone mass through sclerostin by inhibiting the canonical Wnt pathway
Kamiya, N., Ye, L., Kobayashi, T., Mochida, Y., Yamauchi, M., Kronenberg, H. M., Feng, J. Q. and Mishina, Y.

