Cover: Confocal microscopy image of an intestinal adenoma induced by targeted mutation of Lgr5-positive intestinal stem cells in an Lgr5eGFP-Ires-CreERT2/ApcflflKrasG12D/R26-Confetti mouse. Clusters of red (RFP-expressing) or blue (membrane CFP-expressing) cells within the adenoma represent the clonal output of different mutant intestinal stem cells. Lgr5-expressing adenoma cells, which represent candidate cancer stem cells, express eGFP (green). This image was taken by Marc Leushacke and Nick Barker. See Primer on p. 2484.

Sir John Gurdon and Professor Shinya Yamanaka were the recipients of the 2012 Nobel Prize for Physiology or Medicine. Here, Sir John Gurdon recounts the early history of nuclear transfer in *Xenopus* and discusses the work that led to the 2012 Nobel Prize. See Spotlight article on p. 2449.

EDITORIAL
2445 Stem cells and regeneration: a special issue
Pourquié, O., Bruneau, B., Götz, M., Keller, G. and Smith, A.

SPOTLIGHTS
2446 The cloning of a frog
Gurdon, J. B.
2449 The egg and the nucleus: a battle for supremacy
Gurdon, J. B.
2457 Induced pluripotent stem cells in medicine and biology
Takahashi, K. and Yamanaka, S.

DEVELOPMENT AT A GLANCE
2463 Hematopoiesis
Jagannathan-Bogdan, M. and Zon, L. I.
2468 Nuclear reprogramming
Halley-Stott, R. P., Pasque, V. and Gurdon, J. B.

PRIMERS
2472 How to make a functional β-cell
Pagliuca, F. W. and Melton, D. A.
2484 Lgr proteins in epithelial stem cell biology
Barker, N., Tan, S. and Clevers, H.

HYPOTHESES
2495 The mammalian germline as a pluripotency cycle
Leitch, H. G. and Smith, A.
2502 Tumor suppressors: enhancers or suppressors of regeneration?
Pomerantz, J. H. and Blau, H. M.

REVIEWS
2513 Histone variants in pluripotency and disease
Skene, P. J. and Henikoff, S.
2525 Polycomb complexes in stem cells and embryonic development
Aloia, L., Di Stefano, B. and Di Croce, L.
2535 Stem cell metabolism in tissue development and aging
Shyh-Chang, N., Daley, G. Q. and Cantley, L. C.
2548 Neurotransmitter-mediated control of neurogenesis in the adult vertebrate brain
Berg, D. A., Belnoue, L., Song, H. and Simon, A.
2562 Ageing stem and progenitor cells: implications for rejuvenation of the central nervous system
van Wijngaarden, P. and Franklin, R. J. M.
2576 Stem cells in retinal regeneration: past, present and future
Ramsden, C. M., Powner, M. B., Carr, A.-J. F., Smart, M. J. K., da Cruz, L. and Coffey, P. J.
The discovery of induced pluripotent stem cells (iPSCs) has opened up unprecedented opportunities in the pharmaceutical industry, the clinic and in laboratories. Here, Kazutoshi Takahashi and Shinya Yamanaka outline current knowledge and future prospects in the iPSC field. See Spotlight article on p. 2457.

STEM CELLS AND REGENERATION

2587 Fibronectin mediates mesendodermal cell fate decisions

2597 Specification of chondrocytes and cartilage tissues from embryonic stem cells

2611 miR-200 and miR-96 families repress neural induction from human embryonic stem cells

Du, Z.-W., Ma, L.-X., Phillips, C. and Zhang, S.-C.

2619 ASCL1 reprograms mouse Müller glia into neurogenic retinal progenitors

2632 VEGFA-dependent and -independent pathways synergise to drive Scl expression and initiate programming of the blood stem cell lineage in *Xenopus*

Ciau-Uitz, A., Pinheiro, P., Kirmizitas, A., Zuo, J. and Patient, R.