Supplementary Figures

Figure S1. Reducing Dkk1 in compound mutants of Pax9-/Dkk1/t; Wnt1Cre failed to rescue the defects of tooth organs, parathyroid glands, thymus and hind limb in Pax9 ${ }^{/ /}$embryos. (A-C) H\&E staining of sections through developing $1^{\text {st }}$ molar in P0 pups. Compared with late bell stage in Pax9+/-Dkk1/f+(A), tooth development arrested at bud stage in Pax9 ${ }^{\circ}$ Dkk $1^{1 / /}$ (B, black arrowhead) while the $1^{\text {st }}$ molar advanced to early cap stage in Pax9 ${ }^{- \text {Dkk } 1^{1 /+} \text {;Wnt1Cre (C, black arrowhead). (D-F) H\&E staining of }}$ sections through thyroid in P0 embryos. Parathyroid gland is near the dorsolateral border of the thyroid lobe in Pax9+- $D k k 1^{1 /+}$ samples (D, black arrow) but missing in Pax9 $9^{-D k k 1^{f /+}}$ (E) and Pax9 $9^{--D k k 1^{1 /+} ; \text { Wnt1Cre embryos (F). (G-I) H\&E staining of }}$ sections through thymus position in P0 embryos. Compared with the dark-stained thymus in Pax9 ${ }^{+/-D k k 1^{f /+}}$ samples (G), Pax9 ${ }^{-/ D k k 1^{f /+}}$ (H) and Pax9 $9^{--D k k 1^{1 /+} ; \text { Wnt1Cre }}$ embryos (I) showed lack of thymus. (J-L) The ventral views of hind limb. In comparison
to the normal digits in Pax9 ${ }^{+/-}$Dkk1 $1^{f /-}$ samples (J), $\operatorname{Pax}^{-/-} \operatorname{Dkk~}^{1 /++}$ (K) and Pax9 ${ }^{-/}$ Dkk $1^{f /+}$;Wnt1Cre embryos (L) had extra-formed digit (red arrows in K and L). es, esophagus; m, molar; pt, parathyroid gland; T, tongue; th, thymus; thy, thyroid; tr, trachea. Scale bar represents $100 \mu \mathrm{~m}$.

A

WAY-262611

Figure S2. The structure formula of Wnt agonists used for treatments. (A) Dkk1 inhibitor, WAY-262611; (B) Dkk inhibitor II, IIIc3a (Pelletier et al., 2009; Li et al., 2012).

Figure S3. The residual fusion defects in the treated Pax9 ${ }^{-/-}$samples were rescued after 3 days of culture. The whole mount view of palates treated with WAY-262611 inutero (A, B) and with additional 3 days of culture after WAY-262611 in-utero treatment (C). 60\% (11 in 18) Pax9 ${ }^{-/}$embryos showed full closure of palate shelves (A) and 40\% (7 in 18) Pax9-/ embryos showed residual fusion defects between primary and secondary palate (B). The residual fusion defects were resolved in-vitro after culture for 3 days $(n=5)(C)$. Dashed line indicates the position of section in D, E, F, respectively. Black arrows point the position of the $3^{\text {rd }}$ ruga (R3). HE staining of frontal sections through palates showed fully closure (D), small gap at the $3^{\text {rd }}$ ruga (E) and the gap disappeared after 3 days of culture (F).

Figure S4. The treatments with Wnt signaling agonists didn't rescue cleft palate in Msx1// embryos. Compared with intact palate in Msx1+/+ embryo (A), all the Msx1-1 embryo (B), WAY-262611 treated Msx1\% embryos (C, 15 samples) and IIIc3a treated Msx1\% embryos (D, 34 samples) showed 100% penetrance of the complete cleft palate.

Figure S5. Quantitative RT-PCR analysis of gene expression of known Pax9 targets from control and WAY-262611 treated groups. In Pax9 samples, the expression levels of endogenous Osr2, Msx1 and Bmp4 were significantly reduced while Fgf10 mRNA was moderately decreased. Treatment with Wnt signaling agonist WAY-262611 did not appear to restore levels of Bmp4, Msx1, Fgf10 and Osr2 expression. Error bars indicate s.e.m., * $P<0.05$. CTR, control treatment; WAY, WAY262611 treatment.

Figure S6. The knock-in Myc-Osr2 was not translated into protein in the palate after WAY-262611 treatment. (A-E) Lack of detection of Myc-Osr2 protein in E13.5 palate frontal sections in WAY-262611 treated embryos using anti-Myc antibody. No Myc-staining was detected in Pax9+- or Pax9\% samples with control or WAY-262611 treatment (A-D). Pax9 ${ }^{+_;} ;$FLP (also named Pax90sr2Kl in Zhou et al., 2011) sample was used as the positive control to show the strong and specific Myc-staining, in which samples Myc-Osr2 was translated into protein (E). (F-I) In-situ hybridization in E13.5 palate frontal sections using Osr2-specific probe. Though stronger Osr2 signals were detected in Pax9 samples (G, I) than Pax9 ${ }^{+/}$samples (F, H), representing the transcription of extra copy of transgenic Osr2, there is no significant increase of Osr2 expression after WAY-262611 treatment (comparing H with F, I with G). Anti-Myc antibody staining in red and in-situ hybridization signals are shown in blue. Ctr, control treatment; WAY, WAY-262611 treatment.

Figure S7. Wnt agonist therapies failed to rescue the defects of tooth organs, parathyroid glands, thymus, and hind limb in Pax9 ${ }^{\circ}$ embryos. (A-C) H\&E staining of sections through developing $1^{\text {st }}$ molar at E18.5. Compared with late bell stage in Pax9 ${ }^{+/}$(A), tooth development arrested at bud stage in $\operatorname{Pax9}{ }^{\circ}$ (B, black arrowhead) while the $1^{\text {st }}$ molar advanced to early cap stage in WAY-262611 treated Pax9 9 (C , black arrowhead). (D-F) H\&E staining of sections through thyroid of E18.5 embryos. Parathyroid gland is near the dorsolateral border of the thyroid lobe in Pax9+/ samples (D, black arrow) but missing in Pax9 embryos without (E) or with (F) WAY-262611
treatment. (G-I) H\&E staining of sections through thymus position in E18.5 embryos. Compared with the dark-stained thymus in Pax9 ${ }^{+/-}$samples (G), Pax9 ${ }^{-/-}$embryos without (H) or with (I) WAY-262611 treatment showed lack of thymus. (J-L) The ventral views of hind limb. In comparison to the normal digits in Pax9+- samples (J), Pax9-/ embryos without (K) or with (L) WAY-262611 treatment had extra-formed digit (red arrows in K and L). es, esophagus; m, molar; pt, parathyroid gland; T, tongue; th, thymus; thy, thyroid; tr, trachea. Scale bar represents $200 \mu \mathrm{~m}$.

Supplementary Table 1:

Primers for Quantitative RT-PCR

Name	Sequence	Name	Sequence
Bmp4-QF	GAGGGATCTTTACCGGCTCC	Cited1-QF	TCGCTTCGTCCGTACCTCAG
Bmp4-QR	GTTGAAGAGGAAACGAAAAGCAG	Cited1-QR	CTCCTGGTTGGCATCCTCCTT
Dkk1-QF	AACTACCAGCCCTACCCTTG	Gbx2-QF	GCAACTTCGACAAAGCCGAG
Dkk1-QR	TCTGGGATATCCATCCCCCG	Gbx2-QR	GACAGCCCCGACGAGC
Dkk2-QF	TACTCTTCCAAAGCCAGACTCCA	Fgf4-QF	AAGCTCTTCGGTGTGCCTTT
Dkk2-QR	CCTCATTCTTCCGCATTCCA	Fgf4-QR	CGGAGGGTCACAGTCTAGGA
Lef1-QF	GAAATCATCCCAGCCAGCAA	Phox2b-QF	GTACGCCGCAGTTCCATACA
Lef1-QR	GGGCATCATTATGTAGCCAGAGTA	Phox2b-QR	CTGCTTGCGAAACTTAGCCC
Tfap2b-QF	TACAGACAGCGGAGTCCTGA	Hand2-QF	CACCAGCTACATCGCCTACC
Tfap2b-QR	CATCGTGCCGGTCCTCATAG	Hand2-QR	TCTCATTCAGCTCTTTCTTCCTCT
Msx1-QF	CGGCCATTTCTCAGTCGG	Ascl1-QF	TCTCGTCCTACTCCTCCGAC
Msx1-QR	CTTGCGGTTGGTCTTGTGC	Ascl1-QR	ATTTGACGTCGTTGGCGAGA
Msx2-QF	ACACCCTTCACCACATCCCA	L1cam-QF	GCTCCTCATCCTGCTCATCC
Msx2-QR	TTCCGCCTCTTGCAGTCTTT	L1cam-QR	TCTCCAGGGACCTGTACTCG
Pax9-QF	TATTCTGCGCAACAAGATCG	Osr2-QF	TCTTTACACATCCCGCTTCC
Pax9-QR	GGTGGTGTAGGCACCTTAGC	Osr2-QR	GGAAAGGTCATGAGGTCCAA
Fgf10-QF	TTTGAGCCATAGAGTTTCCCC	Gapdh-F	TGGAGCCAAAAGGGTCA
Fgf10-QR	CGGGACCAAGAATGAAGACTG	Gapdh-R	CTTCTGGGTGGCAGTGA

