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Fig. S1. Average area of different polygon classes Mean areas of different polygon classes normalised to the average area of cells, 〈An〉/〈A〉, in experimental data from 
the ventral and dorsal domains at mouse neural tube stage E10.5 and E11.5.
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Fig. S2. Simulations without IKNM match experimental data less well A) Map of the average of maximum distance between the experimental and simulated empirical 
cumulative distribution function of cell area distribution for a model without IKNM (constant target area). Experimental data corresponds to E11.5 embryos and simulations 
correspond to 10 simulations per point in the parameter space. Roman numeral marked points indicate the mechanical parameters selected, ( ) in Fig. 3A. B) Empirical 
cumulative distribution function (ECDF) of cell elongation in simulations with and without IKNM using mechanical parameter V in Fig. 3A compared to E11.5 experimental 
data of mitotic and non-mitotic cells (left and right respectively).
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Fig. S3. Determining drag coefficients that generate anisotropic growth in simulations A) Heatmap indicating the difference between simulation and experimental 
tissues for different values of the drag coefficients µ ′ and µ′′. The absolute value of the difference in the change in DV length of the tissue over 48h plus the absolute value of 
the difference in the final tissue aspect ratio (AP/DV) between simulations and experimental data was taken and then this quantity was averaged over 10 simulations. Colour 
map shows the average difference (log scale) from 10 different simulations per point with the experimental data from E11.5 embryos. Other parameters are indicated in Table
2. Roman numerals indicate mechanical parameters used (Λ̄, Γ̄) in Fig. 3A. B) The AP/DV aspect ratio of simulated tissues at the end of the simulation (72h) for a range of
µ′′/µ′ ratios. µ′′ = 1 is held constant and µ′ is varied from 0.0025 to 1. The proliferation rate is 0.05h−1 and there is no differentiation. Parameter regime V is used. The
reported errors are SE.

Development: doi:10.1242/dev.176297: Supplementary information

D
ev

el
o

pm
en

t •
 S

up
pl

em
en

ta
ry

 in
fo

rm
at

io
n



I II III IV V VI

30 h
78 h

Fig. S4. The effect of introducing differentiation on DV length of the pMN domain DV length of the pMN domain relative to the total DV length of the tissue at the point 
pMN is introduced to simulations (blue) and after 48 hours (green). Differentiation rate in pMN domain 0.1h−1. Other parameters are indicated in Table 2. These time points 
correspond to experimental samples (Xpt data) from E9.5 and E11.5 mouse embryos, respectively. The DV length at these developmental stages was measured in (Kicheva 
et al. (2014)).
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Fig. S5. Shape of clones of different size in the pD and pMN domain The AP/DV aspect ratio for clones containing the indicated number of cells per clone (3 green, 4 
yellow, 5 purple, 6 blue) in the pD and pMN domains. Experimental samples (Xpt data) are compared to the result of 12 simulations per mechanical parameter set ( ) 
from Fig. 3A. Differentiation rate in pMN is 0.1h−1. Other parameters are indicated in Table 2.
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Fig. S6. Effect of proliferation and differentiation rate on the size and shape of simulated neuroepithelial tissue A) Number of cells in simulated tissues as a function of 
time for different proliferation rates and no differentiation. The proliferation rates from top to bottom: 0.05h−1 (red), 0.04h−1 (blue), 0.03h−1 (green), 0.02h−1 (purple), 
0.01h−1 (grey), 0h−1 (black). In A-I: the simulation starts with an initial period of (t < 26h) during which the proliferation rate is 0.05h−1 and there is no differentiation. 
Afterwards proliferation or differentiation is altered as indicated. In A-H parameter regime V is used. B) The number of cells as a function of time for different differentiation 
rates and fixed p roliferation r ate =  0 .05h−1. T he d ifferentiation r ate i s 0 h−1 ( red), 0 .01h−1 ( blue), 0 .02h−1 ( green), 0 .035h−1 ( purple), 0 .05h−1 ( grey), 0.075h−1 

(black). The parameters were chosen so that the net growth rate in B is similar to that in A for curves of the same colour (except black). C) Overlaid data from A and B. D) 
Aspect ratio of the tissue AP to DV extension for varied proliferation and no differentiation (same as main Fig. 4F, parameters as in A). E) As D but for varied differentiation 
and fixed proliferation (parameters as in B). F) Overlaid data from D  and E. Only simulations with positive net growth rate are plotted (no black trajectories). G, H) The 
tissue aspect ratio (AP/DV) from D and E as a function of cell number. Only conditions with positive growth rate are shown. I) The tissue aspect ratio (AP/DV) for varied 
proliferation and no differentiation in parameter regime VI. The proliferation rates and colour convention as in (A). Data A-I was averaged over 12 independent simulations 
for each condition. The reported errors are SEM. If error bars are not visible the SEM was very small (<2%).
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Fig. S7. Influence of the ratio of the AP/DV drag coefficients on the shape of tissue with different rates of differentiation Increasing the differentiation rate increases 
the AP/DV aspect ratio of simulated tissues for all µ′′/µ′ ratios larger than 1. The AP/DV aspect ratio at the end of the simulation (72h) is reported. The simulation starts 
with an initial period of (t < 26h) during which the proliferation rate is 0.05h−1 and there is no differentiation. Afterwards differentiation is altered: 0h−1 (purple, same as 
in Fig. S.3B), 0.05h−1 (red), 0.1h−1 (solid light blue). The indicated µ′′/µ′ ratio is fixed from the start. The parameter regime V is used. In the case µ′′/µ′ =1, the final
AP/DV aspect ratio is <1. This is because the tissue is initialized with hexagonal mesh of 10 by 10 cells (honeycomb pattern) that has the AP/DV ratio = √3/2 ≈ 0.87. If the 
tissue is initialized with hexagonal mesh of 10 cells in DV direction and 12 cells in AP direction (initial AP/DV ratio ≈ 1.04), then the end result is also isotropic as expected 
(empty light blue dot). The reported errors are SE.
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Fig. S8. Cell elongation in simulated tissue and experimental data Histogram of cell elongation in cells close to mitosis (brown) and non-mitotic (red) cells in simulations 
and experimental data in the dorsal domain. In the experimental data, the 2.5% of cells with largest area were considered mitotic. For the simulations, parameter regime V 
was used.
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Fig. S9. Cylindrical representation of the neural tube A) Cylindrical representation where R is the radius, θ is the angle and H is height of the cylinder and the z-axis is 
along this length. B) Polygon representation of the apical junctional network.

Development: doi:10.1242/dev.176297: Supplementary information

D
ev

el
o

pm
en

t •
 S

up
pl

em
en

ta
ry

 in
fo

rm
at

io
n



Region I

Region II

Region III

Region IV

Λ Γ̄Fig. S10. Phase diagram Phase diagram for the biophysical parameter space for hexagonal cells in terms of ¯ and .
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Supplementary Materials and Methods: Neuronal differentiation influences progenitor 
arrangement in the vertebrate neuroepithelium

I. CYLINDRICAL REPRESENTATION

The domain of the vertex model is a cylinder, the ra-
dius, R, and height, H, of which can change in time.
A natural set of coordinates for the vertex i within the
cylinder are (θi, z̃i), where θi are cylindrical polar angles
and z̃i = zi/H, where zi is the coordinate in the direc-
tion along the length of the cylinder, see Fig. S9. Note
that in simulations we actually impose periodic bound-
ary conditions also in the direction along the length of
the cylinder. The movement of vertices is determined by
an energy function, E.

We assume overdamped movement, with the drag coef-
ficient for vertices within the cylinder (whilst the cylinder
size is fixed) being µ. Therefore:

µR
dθi
dt

= − 1

R

∂E

∂θi
, (SM.1)

µH
dz̃i
dt

= − 1

H

∂E

∂z̃i
. (SM.2)

In addition the cylinder itself can grow. We assume
that cells (whose average areas are constant) experience
some drag proportional to their speed, both radial and
tangential (frictional) as the outside surface of the cylin-
der expands. Radially the speed of each cell is dR

dt and
along the length of the cylinder, the velocities are on av-
erage 1

2
dH
dt relative to a fixed point at one end of the

cylinder 1. Let us define the relevant drag coefficients to
be µ′ radially and 2µ′′ along the length of the cylinder.
The equation for the radius and the height are deter-
mined by the balance between the radial component (the
height component) of the potential forces and the accu-
mulated drag on all of the cells:

µ′Nc
dR

dt
= −∂E

∂R
, µ′′Nc

dH

dt
= − ∂E

∂H
, (SM.3)

where Nc is the number of cells. We note that the three
drag coefficients µ, µ′ and 2µ′′ are likely to be different.
We also note when a cell is added its energy is added to
E.

The coordinates that we actually use in the vertex
model code are given by (xi, zi), where xi = Rθi and
zi = Hz̃i, which are effectively rectangular coordinates
in a folded out cylinder. The equation for the radius,
thus becomes:

Ncµ
′ dR

dt
= −

∑
i

∂E

∂xi

∂xi
∂R

= − 1

R

∑
i

xi
∂E

∂xi
. (SM.4)

1 The magnitude of the overall force is the same if we consider the
middle of the cylinder as being stationary.

Therefore

dxi
dt

= − 1

µ

∂E

∂xi
− 1

µ′
xi

NcR2

∑
j

xj
∂E

∂xj
. (SM.5)

Similarly,

dzi
dt

= − 1

µ

∂E

∂zi
− 1

µ′′
zi

NcH2

∑
j

zj
∂E

∂zj
. (SM.6)

In the code, we update xi and zi first according to
equation (SM.1) and (SM.2), (i.e. in time step ∆t we add
R∆θi and H∆z̃i), then we multiply by a factor R+∆R

R

and H+∆H
H respectively, where we call ∆R

R and ∆H
H “ex-

pansion” and these are given by − ∆t
Ncµ′R2

∑
j xj

∂E
∂xj

and

− ∆t
Ncµ′′H2

∑
j zj

∂E
∂zj

.

II. BIOPHYSICAL PARAMETER SPACE

We study the effect of the biophysical parameters on
the cell dynamics. The energy (Eq. 4) is determined by
the vertex positions and parameters K, Λ, and Γ. Magno
et al. [2015] find parameter regions that yield different
behaviours depending on the mechanical parameters.

The energy E for an individual cell is given by:

E =
K

2
(A−A0)2 +

Λ

2
L+

Γ

2
L2. (SM.7)

The interfacial tension γ and pressure Π are given by

γ = ∂E
∂L =

Λ

2
+ ΓL, (SM.8)

Π = −∂E∂A= −K(A−A0). (SM.9)

A reduction in cell perimeter reduces the energy and
is therefore favoured. This favours cells that take a reg-
ular shape, hence we require the interfacial tension to be
positive,

γ =
Λ

2
+ ΓL > 0. (SM.10)

This should be true for the equilibrium cell size.
Suppose a cell has a fixed shape and denote the square

root of its area by l and its shape index by s = L/
√
A

where L and A are the perimeter and the area cell. The
equilibrium size is determined by setting ∂E

∂l = 0:

∂E

∂l
= γ

dL

dl
−Π

dA

dl
= 0, (SM.11)

thus at equilibrium γs = 2Πl, and therefore

2Kl3 = −Λ

2
s+ (2KA0 − Γs2)l. (SM.12)
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We note that when l = 0, ∂E
∂l = Λs, so the state l = 0

is stable if and only if Λ > 0. Eq. SM.12 has a single
positive solution corresponding to an energy minimum
if Λ < 0 (meaning cells converge to a single equilibrium
area). If Λ > 0, Eq. SM.12 can either have zero positive
solutions (in which case all cells collapse to zero area)
or two positive solutions. In the latter case, the larger
positive solution will correspond to an energy minimum
and the small positive solution to an energy maximum.
Thus cells with area greater than the unstable value will
expand their area towards a fixed positive value, while
the area of small cells will collapse to zero.

We note that the condition for the state l = 0 to be un-
stable is independent of the target area. In our model, the
target area varies slowly compared to the movement of
vertices and thus we expect this property to hold for the
same parameter values in the model with varying target
area too. The condition for regularly shaped cells does
depend on the target area, since when interfacial ten-
sion is zero, the minimum energy will be attained when
cell area is equal to target area. With other parameters
fixed, as the target area increases, the interfacial tension
will also increase and so cells will tend to be more regu-
lar. Thus it is possible that small cells will be irregularly
shaped, but larger ones will be regularly shaped. This is
because for small cells the adhesive force will dominate
the force from the actomyosin ring, whereas for larger
cells, the opposite will be true.

The final condition that we need to determine is the
condition for there to be two positive steady states in-
stead of zero when Λ > 0. There are two positive states
if and only if

A0 >
Γs2

2K
+

3

4

(
Λs

K

)2/3

. (SM.13)

This condition depends on our variable target area.
What really matters, however, is whether cells are likely
to grow at any size that they attain (i.e. it does not
matter if we are in the region with two stable areas if the
cells are so small when they are born that they shrink to
zero). A necessary condition for cells to shrink from their
size at birth is that ∂E

∂l

∣∣
l=
√
Ac/2

< 0 with the target area

given by its value at the start of the cell cycle. A sufficient
condition is that ∂E

∂l

∣∣
l=
√
Ac/2

< 0 with the target area

given by its minimal value. Now

∂E

∂l

∣∣∣∣
l=
√
Ac/2

=
Λ

2
s+Γs2

√
Ac/2+2K

√
Ac/2(Ac/2−A0).

(SM.14)
The cells will thus grow if

2K
√
Ac/2(A0 −Ac/2) >

Λ

2
s+ Γs2

√
Ac/2. (SM.15)

Let us use the notation of Farhadifar et al. [2007], with
the A0 that they use to create the nondimensional pa-
rameters given by its mean value, 〈A0〉 during the cell

cycle in our model. The nondimensional parameters are
Λ̄ = Λ

K〈A0〉3/2 and Γ̄ = Γ
K〈A0〉 . Let Ac/(2〈A0〉) = c and

the value of A0 in Eq. SM.15 be β〈A0〉. Then cells will
grow if

Λ̄s/2 + Γ̄s2
√
c < 2

√
c(β − c). (SM.16)

If the model of target area variation with the cell cycle
and the critical area for cell division are fixed, then, for
a given shape index (e.g. that of a regular hexagon), this
forms a diagonal region in the phase space.

We note that equations SM.13 and SM.15 imply that
cells with lower shape indices (i.e. more regular and with
larger number of sides) are more likely to be stable.

In Fig. S10, we show the phase diagram in the space
of the parameters Λ̄ and Γ̄. Region I is where cells
are expected to have negative interfacial tensions and
so have irregular shapes since they do not want to min-
imise their perimeters. The boundary of this domain
is at Λ + Γs

√
A0 = 0, so Λ̄ + Γ̄s = 0. We plot this

for hexagonal cells (s = 2 × 31/421/2). In Region II,
cells take regular shapes and the only stable size is pos-
itive. The other boundary of this domain is at Λ = 0 or
Λ̄ = 0. In Region III, cells take regular shapes and small
cells collapse, whilst larger ones grow to an equilibrium
size. In Region IV, all cells collapse. The boundary be-

tween these regions is given by A0 = Γs2

2K + 3
4

(
Λs
K

)2/3
or

2 = Γ̄s2 + 3
2 (sΛ̄)2/3. We plot this for hexagonal cells.

We also show as the dotted line, a line below which all
cells should grow (Eq. SM.16). Here β = 0.68/1.25 is
the minimum value of A0 divided by its mean value. The
minimal value is calculated from Eq. (1), assuming mean
growth rate, and c = 1.3/(2 · 1.25) is the critical area di-
vided by twice the mean value of A0 (all nondimensional
units).

III. TISSUE ASPECT RATIO DEPENDS ON
EXPANSION RATE, THE VALUE OF Γ AND ON

HOW EFFICIENTLY CELLS REARRANGE

To gain insight into the anisotropic growth of the tis-
sue, we consider a slightly simpler system. We assume
all cells are identical with area A and we assume that
Λ/Γ << 1, so that the target perimeter is negligible. We
assume cell division is unorientated. Let the dimensions
of the neural tube be R(t) and H(t) and the number of
cells be Nc(t). Therefore NcA = RH. For ease of analy-
sis, we assume that cells are rectangular. In the direction
of R, there are n1 cells of length l1, with R = n1l1 and
similarly in the other direction there are n2 cells of length
l2. Therefore, H/R = (n2 l2)/(n1 l1) and Nc = n1n2. We
start with an equal number of square cells in each direc-
tion. We consider two extreme cases. In the first case,
intercalation can take place rapidly, allowing the num-
ber of cells in each direction to change. In this case, any
change in the tissue shape and the dissipation of drag
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forces will occur predominantly by changing the num-
ber of cells in each direction, rather than by altering cell
shape. In such a scenario, the shape of individual cells
will be relatively unaffected by anisotropic forces and will
be square, hence n2/n1 = H/R. In the second case, inter-
calation does not take place, in which case as the aspect
ratio of the whole tissue changes, the cells change shape
accordingly. In this case, the relative number of cells in
each direction does not change, since cell division is un-
orientated and intercalation impossible, hence n1 = n2

and l2/l1 = H/R.

The expansion of the tissue in dimensions R and H
and perimeter L = 2(l1 + l2), is given by SM.3. On
the shortest timescales, we assume only l1 and l2 change.
Therefore

∂E/∂R = NcK(A−A0)∂A/∂R+NcΓL∂L/∂R

= HK(A−A0) + 2NcΓL/n1

= HK(RH/Nc −A0) + 4n2Γ(l1 + l2)

= H[K(RH/Nc −A0) + 4Γ(1 + l1/l2)].

(SM.17)

Similarly,

∂E/∂H = R [K(RH/Nc −A0) + 4Γ(1 + l2/l1)] .
(SM.18)

In the first case, µ′/µ′′ dR/dH = H/R and the change
in R2 will be µ′′/µ′ times the change in H2, so the aspect

ratio, H/R, will tend to
√

µ′

µ′′ .

In the second case,

µ′Nc
dR

dt
= H[K(A0 −RH/Nc)− 4Γ(1 +R/H)]

µ′′Nc
dH

dt
= R[K(A0 −RH/Nc)− 4Γ(1 +H/R)].

(SM.19)

We expect that in the long term the growth will equi-
librate so that the average areas and aspect ratios of

cells will tend to constants, which we call r = H/R and
A = RH/Nc. Then we have that the length and height
of the tissue satisfy

R =
√
A/r

√
Nc

H =
√
rA
√
Nc.

If we assume that cell numbers grow exponentially with
rate λ, so that dNc

dt = λNc, then substituting into Eqs.
SM.19 gives

λ

2

√
Ncµ

′
√
A/r =

√
rA
√
Nc[K(A0 −A)− 4Γ(1 + 1/r)]

λ

2

√
Ncµ

′′
√
rA =

√
A/r

√
Nc[K(A0 −A)− 4Γ(1 + r)].

Dividing by
√
NcA yields simultaneous equations for r

and A0 −A with solution

r =

√
µ′λ+ 8Γ

µ′′λ+ 8Γ

A0 −A =
8Γ +

√
(µ′λ+ 8Γ)(µ′′λ+ 8Γ)

2K
.

This means that when growth is slow so that
µ′λ, µ′′λ << 8Γ, as t→∞, the aspect ratio should tend
to one. When growth is fast so that µ′′λ, µ′λ >> 8Γ,

the aspect ratio should tend to
√

µ′

µ′′ . As the exponen-

tial growth rate of the tissue varies from small to large,
the asymptotic aspect ratio will vary monotonically be-
tween these two values. Slow tissue growth is defined by
the regime in which perimeter forces greatly exceed drag
forces and rapid tissue growth by the regime in which
drag forces greatly exceed perimeter forces. Cell pres-
sure due to area elasticity is always important. In slow
growth, pressure generated by the difference between tar-
get area and mean area is balanced by the stretched ac-
tomyosin ring, whereas in rapid growth it is balanced by
drag.

The most extreme aspect ratios are achieved when the
actomyosin ring exerts a negligible force or when tissue
rearrangement is extremely efficient.
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Movie 1. Simulation of clones tracked during the 48 h in a tissue with pD (brown) and pMN (red) 
populations. Green and blue cells represent clones in pD and pMN, respectively.

Development: doi:10.1242/dev.176297: Supplementary information

D
ev

el
o

pm
en

t •
 S

up
pl

em
en

ta
ry

 in
fo

rm
at

io
n

http://movie.biologists.com/video/10.1242/dev.176297/video-1
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