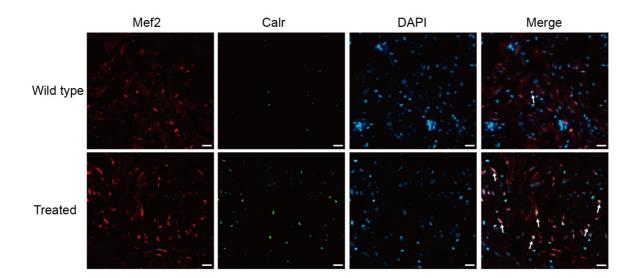

## **Supplementary Table 1**

| Gene     | Primer sequence (5'-3') |
|----------|-------------------------|
| Nkx2.5-F | GGGATGGTAAACCGTGTCTGG   |
| Nkx2.5-R | TAGTTGCTGTTGGACTGTGAAGG |
| Calr-F   | AAACAGATTGACAACCCCTCCT  |
|          | AC                      |
| Calr-R   | CAGCCTCCTCAACATCATCGG   |
| p53-F    | ATAAGAGTGGAGGGCAATCAGC  |
|          | GA                      |
| p53-R    | AGTGATGATTGTGAGGATGGGC  |
|          | СТ                      |
| GLUT1-F  | CCTGTTGCCCTTCTGTCCTG    |
| GLUT1-R  | CCTCATCATCTGTCTGCTCTCG  |
| nppa-F   | GATGTACAAGCGCACACGTT    |
| nppa-R   | TCTGATGCCTCTTCTGTTGC    |
| nppb-F   | CATGGGTGTTTTAAAGTTTCTCC |
| nppb-R   | CTTCAATATTTGCCGCCTTTAC  |
| 18S-F    | CACTTGTCCCTCTAAGAAGTTGC |
|          | А                       |
| 18S-R    | GGTTGATTCCGATAACGAACGA  |

Table S1. Gene-specific primers for real-time PCR

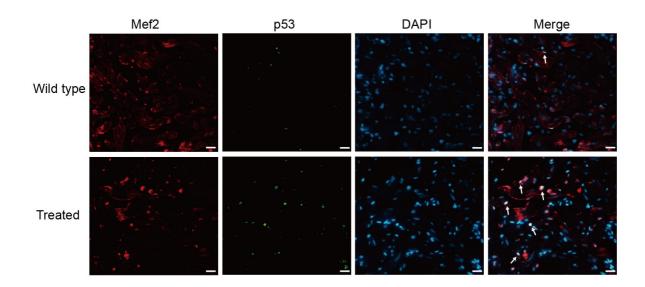

F, forward; R, reverse.

## **Supplementary Figures**



**Supplementary Figure 1.** (A) Myocardial nuclei density, defined as number of myocardial nuclei per field to myocardial density, showing no difference in two groups at week 32 (p > 0.05). (B) Masson's staining did not show any interstitial fibrosis in the two groups (n = 15 field, repeated five times); scale bar = 100 $\mu$ m. (C) Co-staining of PCNA (green), Mef2 (red) with DAPI (blue) on cryosections of adult zebrafish hearts, indicating no significant difference in PCNA staining between wild-type and treated group (*n* = 15 field, repeated five times); scale bar = 10 $\mu$ m; Arrows: PCNA+/Mef2+/DAPI+. (A) Bars represent mean ±

standard error of the mean, n = number of fish examined.

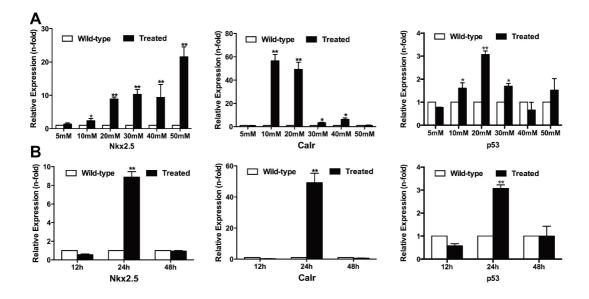



Supplementary Figure 2. Co-staining of Calr (green), Mef2 (red) with DAPI (blue) on

cryosections of adult zebrafish hearts, indicating increased Calr expression on

cardiomyocytes of treated fish compared with the wild-type (n = 15 field, repeated five times);

scale bar =  $10\mu m$ ; Arrows: Calr+/Mef2+/DAPI+ (white, green and red plus blue).




Supplementary Figure 3. Co-staining of p53 (green), Mef2 (red) with DAPI (blue) on

cryosections of adult zebrafish hearts, indicating increased p53 expression on cardiomyocytes

of treated fish compared with the wild-type (n = 15 field, repeated five times); scale bar =

10µm; Arrows: p53+/Mef2+/DAPI+ (white, green and red plus blue).



Supplementary Figure 4. Determination of the optimal conditions for glucose treatment

of cardiomyocytes. (A) Real-time PCR analysis of Nkx2.5, calreticulin, and p53 in

cardiomyocytes (CMs) exposed to glucose for 24 h at different concentrations (5, 10, 20, 30,

40, 50 mM), compared with the wild-type group. (B) Real-time PCR analysis of Nkx2.5,

calreticulin, and p53 in CMs exposed to 20 mM glucose for different times (12, 24, 48 h).

(A-B) Bars represent mean  $\pm$  standard error of the mean (n = 5-6 fish per group). \*p < 0.05,

\*\*p < 0.01 as compared with the wild-type group.

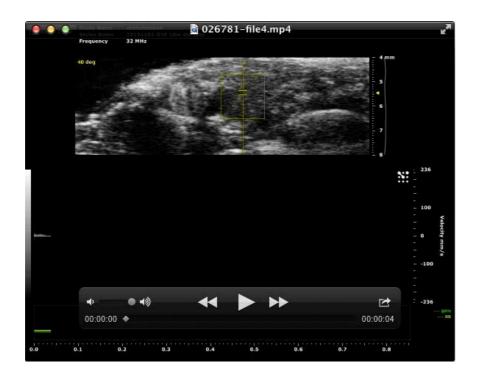
## **Supplementary Videos**



Movie 1. Ventricular morphology of the wild-type zebrafish at week 32, derived

from B-mode echocardiography.




Movie 2. Ventricular morphology of the treated zebrafish at week 32, derived

from B-mode echocardiography.



Movie 3. Atrioventricular (AV) valve velocity of the wild-type zebrafish at

week 32, derived from Doppler echocardiography.



Movie 4. Atrioventricular (AV) valve velocity of the treated zebrafish at week 32,

derived from Doppler echocardiography.