


Figure S1. Guide RNA tests. A flowthrough of guide RNA testing is shown in panel A. The following test examples are for sg31. B. The cleavage capability of synthetic sgRNAs was assessed on a recombinant plasmid containing a PCR-amplified target fragment of the mouse *dmd* gene (plasmid length 4170 bp). This plasmid contained a single site for the Xbal restriction endonuclease, and digestion of the plasmid with this enzyme was used as a control for the efficiency of sgRNA-driven cleavage. At the same time, the selected plasmid could not be cleaved with the complex containing a nonspecific guide (sgRNA 30) or in the absence of sgRNA or both sgRNA and Cas9 protein. M-1 kb plus DNA ladder (NL001, Evrogen). C. The effectiveness of individual sgRNA was also tested on blastocysts; after direct injection of a

complex containing sgRNA and Cas9 mRNA, embryos were left in a CO<sub>2</sub> incubator before reaching the blastocyst stage. Then, the target region was amplified, and cleavage effectiveness was examined in the T7EI test. T7EI cleaves single-strand DNA, which is a result of partial complementarity of PCR products amplified from injected and noninjected embryos. Cleaved fragments are marked with asterisks and correspond to samples successfully modified by the Cas9-sg31 complex. M-100 bp plus DNA ladder (NL002, Evrogen). Direct Sanger sequencing of PCR products (D) confirmed the specificity of cleavage (products are mapped to the murine dystrophin gene).

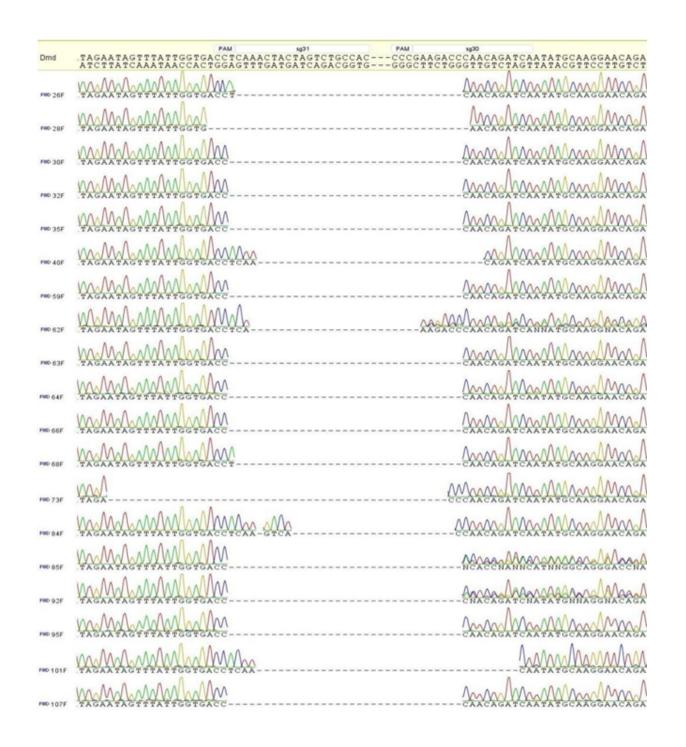



Figure S2. Sanger sequencing results of deletion borders in the *dmd* gene of mutant mice.

Table S1. Primers used for target site amplification for *in vitro* tests and deletion detection after blastocyst microinjections and mouse genotyping.

| Target |                           |                            | Product  |
|--------|---------------------------|----------------------------|----------|
| name   | Forward primer, 5'-3'     | Reverse primer, 5'-3'      | size, bp |
| Lb     | GCGTTTCATTCACTTTCTGGATGTG | AGTCACTTTAGGTGGCCTTGG      | 857      |
| Rb     | GCCAAGAGTTGCCTGAGAGGAAC   | TGACAGTGAATAGTGACTCCAATGGC | 813      |
| sg30   | ACTATTGTGGAACACAGCATACA   | GAGAGAAAAGAGGCAGACTGTAG    | 607      |
| sg31   | TCAAACAAAAGGCAGAAGAGTAAG  | GGTCCAAAGTAGGCCTCGTA       | 434      |
| sg32   | AGGCACATATAGTCAAGTTCAGTCA | TGCCATTCTGATCCTATTCATTTCC  | 730      |
| sg33   | GTTCTACTCTAAAACATCAGAGGCT | ACACATAGGACACATTCATGCAG    | 477      |
| sg34   | CAGTGCCCCACACACATACA      | AGCAAAAGTTATTTTAGGGCATACT  | 505      |
| sg35   | CAGAGGTACTGGCATTTGGAAC    | AAGTGGTATCCCCTTCTGCC       | 432      |
| Tet    | TTGTTCTCCTCTGACTGC        | TGATTGATCAAATAGGCCTGC      | 460      |
| Grid2  | TCATATTATGGAGACCCCAACCA   | GTGGCCAAGCAACTCCTTTT       | 360      |
| Skint5 | AAAGGGACACCTGCTTCTG       | GCCTACCTGGCTGTTTCAAGG      | 344      |
| Sugp2  | GAGCCATCTAAACGGCTGTC      | GCTCCATGACAGGTAGGACT       | 573      |
| Tff3   | TGCAGAGGTTTGAAGCACCA      | CCTGATGGCCAAGGGATGTT       | 406      |
| Unc5c  | GGGACTGGGTGTTTTTGCCT      | TCTCTGCCTCACTGTCACCT       | 386      |
| Fmn2   | GGGCTCGTAGGGGTTCTTTAG     | GGCTAATGGGTACATGGTCTC      | 265      |