

Fig. S1. Toxicity of A β **alone.** (A) Ten-fold dilutions of exponentially growing cultures of BY4742 cells transformed with plasmids carrying the different chimeric constructions under the GAL10 promoter were spotted onto SD (-) or SG (+) agar supplemented with 20 mg/l histidine, 20 mg/l lysine and 60 mg/l leucine. The cells were incubated at 30°C for 3 days. (B) BY4742 cells expressing the different chimeric proteins (6 hours of expression) were collected for total-protein extracts. Equal quantities of proteins were separated by SDS-PAGE on a 12% polyacrylamide gel, transferred onto a nitrocellulose membrane and exposed to anti-A β (Tebu) antibodies.

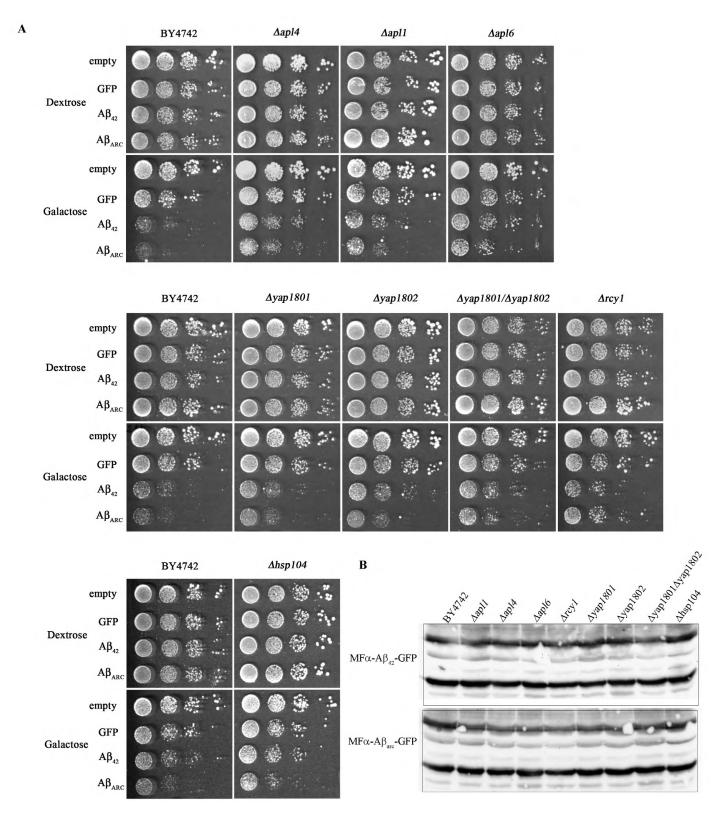


Fig. S2. Yeast mutants modulate A β toxixity without changing its protein level. (A) Ten-fold dilutions of exponentially growing cultures of deleted strains transformed with plasmids carrying the different chimeric constructions under the GAL10 promoter were spotted on the same plate onto SD (-) or SG (+) agar supplemented with 20 mg/l histidine, 20 mg/l lysine and 60 mg/l leucine. (B) Cells expressing the different chimeric proteins (6 hours of expression) were collected for total-protein extracts. Equal quantities of proteins were separated by SDS-PAGE on a 12% polyacrylamide gel, transferred onto a nitrocellulose membrane, and then exposed to monoclonal anti-GFP antibodies (Sigma).

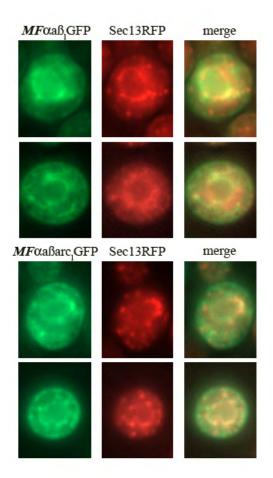


Fig. S3. A β -GFP species colocalize with ER. Wild-type or RFP-tagged strains were grown for 6 hours in SG liquid medium supplemented with 0.67% casaminoacids to induce the expression of the chimeric proteins and were then examined by epifluorescence microscopy.

Table 1. Yeast strains used in this study

Name of strain	Genotype	Source
BY4742	$MATa, his3\Delta I, leu2\Delta 0, ura3\Delta 0$	Eurocarf yeast deletion library
$\Delta a p l 4$	$MATa, his3\Delta I, leu2\Delta 0, ura3\Delta 0, YPR029C::KanMX4$	Eurocarf yeast deletion library
$\Delta apl1$	$MATa, his3\Delta 1, leu2\Delta 0, ura3\Delta 0, YJR005W::KanMX4$	Eurocarf yeast deletion library
$\Delta apl2$	$MATa$, his $3\Delta 1$, leu $2\Delta 0$, ura $3\Delta 0$, YKL135C::KanMX4	Eurocarf yeast deletion library
Δapl3	$MATa, his3\Delta I, leu2\Delta 0, ura3\Delta 0, YBL037W ::KanMX4$	Eurocarf yeast deletion library
$\Delta apm1$	$MATa, his3\Delta I, leu2\Delta 0, ura3\Delta 0, YPL259C::KanMX4$	Eurocarf yeast deletion library
$\Delta apm4$	$MATa, his3\Delta 1, leu2\Delta 0, ura3\Delta 0, YOL062C::KanMX4$	Eurocarf yeast deletion library
Δgga2	$MATa$, his $3\Delta 1$, leu $2\Delta 0$, ura $3\Delta 0$, YHR $108W$::Kan $MX4$	Eurocarf yeast deletion library
$\Delta ent5$	$MATa, his3\Delta I, leu2\Delta 0, ura3\Delta 0, YDR153C::KanMX4$	Eurocarf yeast deletion library
∆clc1	$MATa, his3\Delta I, leu2\Delta 0, ura3\Delta 0, YGR167W::KanMX4$	Eurocarf yeast deletion library
$\Delta rcyl$	$MATa, his3\Delta I, leu2\Delta 0, ura3\Delta 0, YJL204C::KanMX4$	Eurocarf yeast deletion library
Δyap1801	$MATa$, his $3\Delta 1$, leu $2\Delta 0$, ura $3\Delta 0$, YHR161C::KanMX4	Eurocarf yeast deletion library
Δyap1802	$MATa, his3\Delta I, leu2\Delta 0, ura3\Delta 0, YGR241C::KanMX4$	Eurocarf yeast deletion library
$\Delta hsp104$	$MATa, his3\Delta 1, leu2 \Delta 0, lys2 \Delta 0, ura3\Delta 0, YLL026W::KanMX4$	Eurocarf yeast deletion library
SEC13-RFP	$MATa, his3\Delta I, leu2 \Delta 0, lys2 \Delta 0, ura3\Delta 0, YLR208W-RFP-KanMX6$	Peter Arvidson
Δyap1801/Δyap1802	$MATa, his3\Delta I, leu2\Delta 0, ura3\Delta 0, YHR161C::KanMX4, YGR241C::KanMX4$	This study

Table S1. Yeast strains used in this study.

Table S2. Oligonucleotides used in this study

Number	Sequence
792	AAATACACACACTAAATTACCGGATCCTATGGATGCAGAATTCCGACATG
794	ACCAGTGAATAATTCTTCACCTTTAGACATCGCTATGACAACACCGCCCACC
705	GGATGGCCAGGCAACTTTAG
856	GAATAATTCTTCACCTTTAGACATAGCTTCAGCCTCTCTTTTATC
858	GAATAATTCTTCACCTTTAGACATGGATCCGGTAATTTAGTGTGT
859	GTCATGTCGGAATTCTGCATCCATGGATCCGGTAATTTAGTGTGT
706	TTTACACTTTATGCTTCCGG
857	ATGTCTAAAGGTGAAGAATTATTC
860	ATGGATGCAGAATTCCGACATG

Table S2. Oligonucleotides used in this study.