## Supplementary Figure Legend

Figure S1. (A) 293 T cells transiently expressing SFB-tagged wild-type and mutant DAXX or GSTtagged H3.3 were used for immunoprecipitations (IP) with anti-Flag antibodies. The immunoprecipitates were then blotted with the indicated antibodies. (B) BiFC principle. (C) Cells coexpressing YFPn-DKC1 and various YFPc-tagged proteins were analyzed by flow cytometry for fluorescence complementation. PDK1 and TCAB1 served as negative and positive controls respectively. (D) Cells co-expressing YFPn-DKC1 and various YFPc-tagged proteins were analyzed by western blotting. Arrowhead indicates YFPn-tagged DKC1. * indicates various YFPc-tagged proteins.

Figure S2. DAXX deletion mutations do not affect the overall telomerase activity. (A) 293T cells transiently expressing SFB-tagged wild-type and deletion mutants of DAXX were analyzed by QTRAP to assess total telomerase activity. Error bars represent standard error ( $n=3$ ). (B) SFB-tagged wild-type and truncation mutants of DAXX were transiently expressed in 293 T cells. DAXX proteins were immunoprecipitated and western blotted using anti-flag antibodies.

Figure S3. DAXX disease mutations do not affect the overall telomerase activity. (A) 293T cells transiently expressing SFB-tagged wild-type and disease mutants of DAXX were analyzed by QTRAP to assess total telomerase activity. Error bars represent standard error ( $n=3$ ). (B) SFB-tagged wild-type and disease mutants of DAXX were transiently expressed in 293 T cells. DAXX proteins were immunoprecipitated and then western blotted using anti-flag antibodies.

Figure S4. Endogenous DAXX expression would not change in DAXX mutants cells. Endogenous DAXX protein levels in cells used for experiments described for Fig. 1B (A), Fig. 2C (B), Fig. 2D (C), and Fig. 2E (D) were examined by western blotting. GAPDH were used as loading control.


C





A



A



DAXX disease mutants



| Disease | nucleotide(cDNA) | protein | Mutation type | Function inactivation | Interaction by co-IP | Telomerase activity by IP-TRAP | Localization with Cajal body | Localization <br> with telomere | Telomere <br> length | Telomerase enzyme assay |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| - | Wildtype | DAXX | None | None | $\begin{gathered} \text { ATRX, } \\ \text { H3.3, } \\ \text { telomerase } \end{gathered}$ | Positive | Positive | Positive | Normal |  |
| Colon <br> Adenocarcinoma | $9 \mathrm{C}>\mathrm{T}$ | T3T | Nonsense | ATRX, H3.3, telomerase activity, Cajal body, telomere | N.D. | N.D. | N.D. | N.D. | N.D. | N.D. |
| Colon <br> Adenocarcinoma | $42 \mathrm{C}>\mathrm{T}$ | D14D | Nonsense | ATRX, H3.3, telomerase activity, Cajal body, telomere | N.D. | N.D. | N.D. | N.D. | N.D. | N.D. |
| Lung <br> Adenocarcinoma | 93G>A | A31A | Nonsense | ATRX, H3.3, telomerase activity, Cajal body, telomere | N.D. | N.D. | N.D. | N.D. | N.D. | N.D. |
| PanNET | 102delT | S33fs | Indel | ATRX,H3.3,telomerase activity,Cajal body, telomere | N.D. | N.D. | N.D. | N.D. | N.D. | N.D. |
| PanNET | $166 \mathrm{~A}>\mathrm{T}$ | K56X | Nonsense | ATRX, H3.3, <br> telomerase activity, Cajal body, telomere | N.D. | Negative | Negative | N.D. | N.D. | N.D. |
| PanNET | 211delC | F70fs | Indel | ATRX, H3.3, telomerase activity,Cajal body, telomere | N.D. | N.D. | N.D. | N.D. | N.D. | N.D. |
| PanNET | 306_309delGGCG | S102fs | Indel | ATRX, H3.3, telomerase activity, Cajal body, telomere | N.D. | Negative | N.D. | N.D. | N.D. | N.D. |
| PanNET | 389T>G | L130R | Missense | ATRX | loss ATRX <br> binding | Positive | Positive | Positive | Normal | Yes |


| Lung <br> Adenocarcinoma | $529 \mathrm{C}>\mathrm{T}$ | Q177X | Nonsense | Cajal body, telomerase activity, telomere | N.D. | Reduced | N.D. | N.D. | N.D. | N.D. |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Uterine Corpus <br> Endometrioid <br> Carcinoma | 603G $>$ T | E201D | Missense | H3.3, Cajal body, telomerase activity, telomere | N.D. | Reduced | N.D. | N.D. | N.D. | N.D. |
| Paediatric GBM | $712 \mathrm{C}>\mathrm{T}$ | R238X | Nonsense | H3.3, Cajal body, telomere | N.D. | N.D. | N.D. | N.D. | N.D. | N.D. |
| PanNET | 889G>C | A297P | Missense | ATRX, H3.3, telomerase activity, Cajal body, telomere | Reduced <br> ATRX, <br> H3.3, <br> telomerase <br> binding | Reduced | Reduced | Reduced | Reduced | Yes |
| PanNET | c.916C>T | R306X | Nonsense | H3.3, Cajal body, telomere | Reduced <br> H3.3 <br> binding | Positive | Reduced | Reduced | Reduced | N.D. |
| PanNET | 925_926insAGT(hom) | L309Q | Missense | H3.3 | N.D. | N.D. | N.D. | N.D. | N.D. | N.D. |
| PanNET | 1219delG | A406fs | Indel | Cajal body, telomere | N.D. | Positive | Reduced | N.D. | N.D. | N.D. |
| PanNET | 1342G>T(hom) | E448X | Nonsense | telomere | N.D. | N.D. | N.D. | N.D. | N.D. | N.D. |
| PanNET | 1393G $>$ T(hom) | E465X | Nonsense | telomere | Normal | Positive | Positive | Reduced | Reduced | Yes |
| PanNET | 1403delA(hom) | L467fs | Indel | telomere | N.D. | N.D. | N.D. | N.D. | N.D. | N.D. |
| PanNET | 1766delC | S588fs | Indel | telomere | N.D. | Positive | Positive | N.D. | N.D. | N.D. |
| Paediatric GBM | 1885_1886insC | P628fs | Indel | telomere | N.D. | N.D. | N.D. | N.D. | N.D. | N.D. |
| PanNET | 1976delA | K658fs | Indel | telomere | N.D. | Positive | Positive | N.D. | N.D. | N.D. |
| PanNET | 1980delG(hom) | G660fs | Indel | telomere | N.D. | N.D. | N.D. | N.D. | N.D. | N.D. |
| PanNET | 2042_2043insT | A680fs | Indel | telomere | N.D. | Positive | Positive | N.D. | N.D. | N.D. |
| PanNET | 2120delC | L706fs | Indel | telomere | N.D. | N.D. | N.D. | N.D. | N.D. | N.D. |
|  |  |  |  |  |  |  |  |  |  |  |



Table S1. A comprehensive list of DAXX mutations found in patients. Wildtype DAXX is shown as reference. DAXX disease mutants were examined for their ability to interact with other proteins, localization, and effect on telomeres. These data are summarized in the last 6 columns. Abbreviations: 1. GBM, Glioblastoma multiforme. PanNET, pancreatic neuroendocrine tumors. 2. Indel, insertion or deletion. 3. del, deletion. ins, insertion. Hom, homozygous. 4. fs, frame shift. X denotes mutation that results in stop codon. 5. Red: experimemtally confirmed. Blue: predicted. 6. N.D., not determined.

