Supplementary Figure legends:

Fig. S1. Zip3-focus formation in various mutants.
(A) Quantification of numbers of Zip3 foci was carried out in the rad24 sml1 mutant as well as wild type and the rad24 mutant. For each focus-positive chromosome spread, the numbers of Zip3 foci were counted and plotted as shown. The size of each circle represents the number of nuclei with each focus number (i.e., the sizes of circles are proportional to the numbers of nuclei with a given focus number). An average number of foci per nucleus are shown in red (top), and also as a red bar in the graph. Standard deviations of focus numbers are shown in parentheses. "N" at the top represents the number of nuclei analyzed for counting.
(B) Quantification of numbers of Zip3 foci was carried out in the rad24 rad51 mutant as well as wild type, the rad51 and the rad24 mutant.

Fig. S2. Specificity of anti-Rad17 antiserum.
(A) Immunostaining analysis of chromosome spreads of the MEC3-HA cells. The spread was stained with anti-HA antibody (green). A representative image at 4 hr is shown. White bar; $4 \mu \mathrm{~m}$.
(B) Immunostaining analysis of chromosome spreads of the rad17 deletion mutant was performed using anti-Rad17 antiserum (green). As a control, the spread was costained with anti-Zip1 (red). White bar; $4 \mu \mathrm{~m}$.
(C) Chromosome spreads from MEC3-HA diploids were stained with anti-HA (green), anti-Rad51 (red), and anti-Dmc1 (blue) antibodies. In addition to three-color and mono-color, different two-color combinations are shown. A representative image at 4 hr is shown. Scale bar (white): $4 \mu \mathrm{~m}$.
(D) Colocalization frequencies of Rad51 (green) with Zip1-polycomplex (red) in the spo11-Y135F mutant. Immunostaining analysis of chromosome spreads for Zip1 and Rad51 were carried out in the spo11-Y135F mutant as described in Materials and Methods. A representative image at 4 hr is shown. White bar; $4 \mu \mathrm{~m}$.

Fig. S3. Interaction of Zip3 with 9-1-1 clamp.

Pull-down assay of FATT(-Myc)-Zip3. E. coli lysates expressing either FATT-Zip3 or FATT-GFP were incubated with magnetic beads coated with anti-c-Myc antibodies. The beads (Input) were incubated with yeast meiotic cell lysates (at 4 hr) from wild type and mec3 deletion. The beads were recovered, and eluates were analyzed by western blotting using anti-Mec3, anti-c-Myc, anti-Flag, or anti-HA antibodies. Anti-Flag can detect both Ddc1-Flag and FATT-Zip3-Flag. * indicates a non-specific band.

Fig. S4. Interhomolog bias in the rad24 mutant.
(A) Schematic representation of the HIS4-LEU2 recombination hotspot for the analysis of recombination intermediates: single-end invasion (SEI) and interhomolog (IH; red) and intersister (IS; green) double-Holliday junctions (dHJs). Sizes of relevant JM-containing fragments are indicated.
(B) Southern blotting of two-dimensional gel electrophoresis for recombination intermediates. A schematic representation for a typical gel is shown on the left. DNAs from the wild type (4 hr) and the rad24 mutant (5 hr) were analyzed as described in the Materials and Methods. This is an independent analysis of Fig. 5.
(C) Kinetics of IH-dHJ, IS-dHJ, and the ratio of IH/IS dHJs are shown at the bottom. Wild type, open circles; the rad24 mutant, closed circles.

Table S1. Strain list

Yeast strains used in this study.

Figure S1. Miki Shinohara
A

B

Figure S2. Miki Shinohara

Figure S3. Miki Shinohara

Figure S4. Miki Shinohara

Table S1. Strain list

NKY1551	MATa / α, ho::LYS2/", lys2/", ura3/", leu2::hisG/", his4X-LEU2(BamHI)-URA3/his4B-LEU2(MluI), arg4-nsp/arg4-bgl NKY1551 with rad24::LEU2
MSY717	NKY1551 with zipl::LEU2
MSY2820	NKY1551 with mec3::LEU2
MSY3967	NKY1551 with ddcl::LEU2
MSY3969	NKY1551 with rad17::hisG
MSY587	NKY1551 with mecl $:: L E U 2$, smll $::$ KanMX6
MSY3687	NKY1551 with smll::KanMX6
MSY3699	NKY1551 with spol1-Y135F::KanMX4
MSY1737	NKY1551 with rad50-K18I::URA3
MSY1758	NKY1551 with rad51::hisG-URA3-hisG
MSY2746	NKY1551 with rad52: :hisG-URA3-hisG
MSY2777	NKY1551 with trpl::hisG/"
MSY845/846	
MSY831/833	MSY831/833 with ndt80::LEU2
MSY5137	MSY831/833 with ndt80: LEU 2 , rad24: $:$ LEU2
MSY5123	MSY831/833 with, rad24::HygMX6, sml1::KanMX6
MSY5357/5358	MSY845/MSY846 with msh4 : $\mathrm{TRP1}$
MSY2987	MSY845/MSY846 with msh5::TRP1
MSY3935	MSY845/MSY846 with spo22/zip4::TRP1
MSY3162	MSY831/833 with MEC3-3HA::KanMX4
MSY2925	MSY831/833 with MEC3-3HA::KanMX4, rad17::hisG
MSY2989	MSY831/833 with DDC1-3FLAG::KanMX4
MSY3805	NKY1551 with DDC1-3FLAG::KanMX4/"
GTY82	NKY1551 with DDC1-3FLAG::KanMX4/',
KHY235	RAD17-3HA: KanMX4/" $^{\prime \prime}$

