
SUPPLEMENTARY FIGURES

С

DLD1 Cell Viability

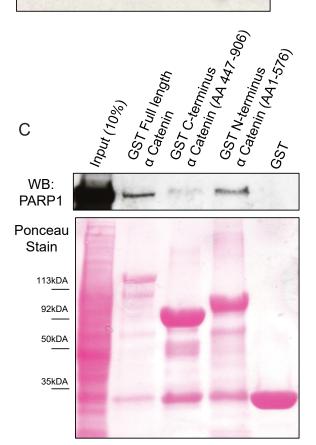
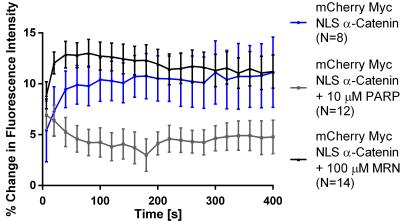
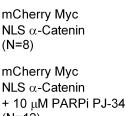


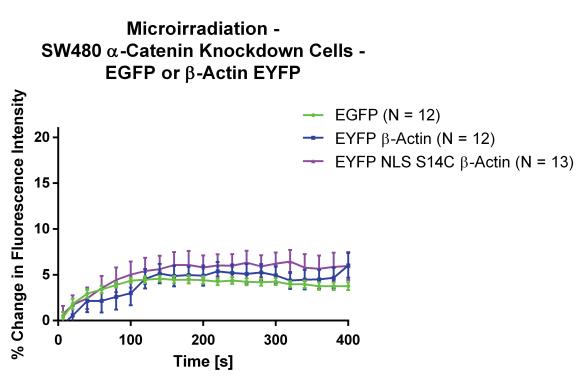
Figure S1: Loss of α-catenin increases γH2AX levels and toxicity in colon cancer cells.

(A) DLD1 cells stably transfected with non-specific (N.S.) and α -catenin (α cat K/D) shRNAs were left untreated, treated with 15 µM etoposide for 1 hour, or treated with etoposide for 1 hour and left to recover for 6 hours in fresh medium. Cells were then extracted in hot SDS and Western blots were performed for the indicated proteins. Increased γH2AX levels in etoposide treated α -catenin knockdown cells were observed relative to wild type. (B) SW480 cells stably transfected with non-specific (N.S.) and α -catenin (α cat K/D) shRNAs were treated and prepared as in (A). (C) DLD1 cells stably transfected with non-specific (N.S.) and α -catenin shRNAs were treated for 48 hours with the indicated concentrations of etoposide. The percentage of cells that remained viable was calculated relative to untreated controls. Mean + SEM is shown (N = 4; * P < 0.05, ** P < 0.01 by 2-way ANOVA).

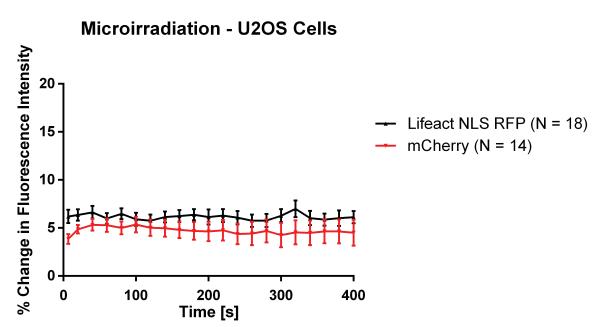

AND CON AND CONTRACT OF CONTRA A CON CONTRACTION OF CONTRACTOR OF CONTRACTO - composition А 1 Sh α-Catenin HDAC 1 γΗ2ΑΧ


		Scaffold	
		Identification	Unique #
Identified Proteins	Weight	Probability	peptides
Catenin alpha-1	100 kDa	100%	69
Glutathione S-transferase P	23 kDa	100%	12
Catenin beta-1	85 kDa	100%	18
ATP-dependent DNA			
helicase 2 subunit 2 (Ku80)	83 kDa	100%	5
Nucleophosmin	33 kDa	100%	4
ATP-dependent DNA			
helicase 2 subunit 1 (Ku70)	70 kDa	100%	5
Poly [ADP-ribose]			
polymerase 1 (PARP1)	113 kDa	100%	4
Nuclease-sensitive element-			
binding protein 1	36 kDa	100%	2
Catenin alpha-2	105 kDa	100%	2

D



mCherry Myc NLS α -Catenin + 100 μM MRNi Mirin


Figure S2: Nuclear α-catenin interacts with several DNA damage proteins.

(A) Nuclear extracts isolated from SW480 wildtype cells, α -catenin knockdown cells infected with non-specific hairpin shRNA lentivirus, and α-catenin knockdown cells rescued with Ientivirus expressing Myc NLS α -catenin or Myc NLS $\Delta\beta$ α -catenin were blotted for yH2AX. Reexpression of Myc NLS full length α -catenin but not Myc NLS $\Delta\beta$ α -catenin resulted in γ H2AX levels similar to wild type cells. HDAC1 was used as a loading control. (B) Nuclear extract from SW480 α catenin knockdown cells was incubated with GST α-catenin protein in vitro and GST pulldowns were performed. Mass spectrometry analysis identified several DNA damage pathway related proteins. Proteins with a 100% probability of identification and ≥ 2 identified peptides are reported. (C) Nuclear extract from SW480 α -catenin knockdown cells was incubated with GST full length α-catenin protein, GST N-terminus α-catenin, GST C-terminus αcatenin, or GST alone in vitro and GST pulldowns were performed. Western blotting for PARP1 shows a specific interaction with α -catenin mediated through its N-terminus. Ponceau stain is shown to indicate GST protein levels. (D) U2OS cells were transfected with mCherry fused to Myc NLS α -catenin for 48 hours. Cells were then treated with 30 mM LiCl, incubated with Hoechst 33342 (5 µg/mL) to sensitize the cells, and microirradiated to induce localized sites of DNA damage. Recruitment of mCherry Myc NLS α -catenin (N = 8) and mCherry Myc NLS α catenin pre-treated with the PARP inhibitor, PJ34 (PARPi; N = 12), or Mre11-Rad50-Nbs1 (MRN) complex inhibitor, Mirin, for 1 hour (MRNi; N = 14) are shown (Mean ± SEM). PARP inhibition was able to reduce α -catenin recruitment. However, MRN, which is also responsible for the early recognition of DNA lesions and downstream signaling, was not identified in our proteomics screen and has no effect on α -catenin recruitment.

В

Figure S3: Nuclear actin is not enriched at sites of DNA repair.

(A) SW480 α -catenin knockdown cells transfected with EGFP alone, EYFP β -actin, or EYFP NLS S14C β -actin for 48 hours were pre-treated with Hoechst 33342 (5 μ g/mL) and microirradiation experiments were performed. Mean ± SEM are shown. (B) U2OS cells transfected with mCherry alone or Lifeact NLS RFP for 24 hours were pre-treated with 30 mM LiCl, Hoechst 33342 (5 μ g/mL), and microirradiation experiments were performed. Mean ± SEM are shown.