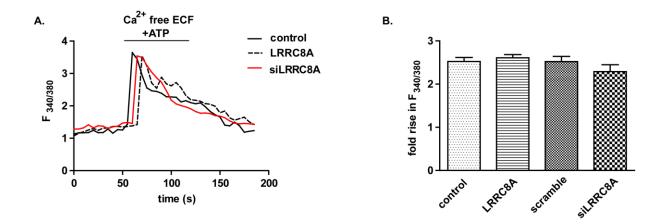
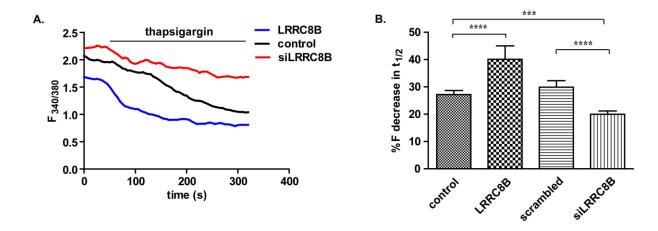


Supplementary figures

S1. Overexpression of LRRC8B supresses IP₃R-activated intracellular Ca²⁺ ([Ca²⁺]_c) rise


A: [Ca²⁺]_c transients evoked by injecting IP₃ (50μM) in HEK293 cells. IP₃ was administered through a patch pipette by making 'whole cell'. Both pipette solution and ECF had no Ca²⁺. B: Cumulative data (mean ± SEM, n = 7-10) showing significantly lesser IP₃-induced [Ca²⁺]_c rise in LRRC8B overexpressed cells . C: Representative traces showing [Ca²⁺]_c rise, elicited by the application of 100 μM carbachol, in nominally Ca²⁺-free external buffer. D: Cumulative data (mean ± SEM, n = 36-42) showing significantly lesser rise of [Ca²⁺]_c by carbachol in LRRC8B overexpressed cells .

S 2. 2-APB and xestospongin c do not alter ER-Ca²⁺ stores


A: ER-Ca²⁺stores were accessed with high concentration (5μM) of ionomycin in Ca²⁺-free ECF. Robust rise of [Ca²⁺]_c following ionomycin treatment reflects the amount of Ca²⁺ present in stores. Both control and 2-APB treated cells exhibited ionomycin-mediated [Ca²⁺]_c rise to the similar extent. Cells were first incubated with or without 2-APB for 10 mins, after which ATP was applied in Ca²⁺-free ECF. Then ionomycin (in Ca²⁺-free ECF) was applied to release ER-Ca²⁺. ATP (100μM) caused a rise in [Ca²⁺]_c in control cells but not in 2-APB

treated cells. *B*: ER-Ca²⁺ imaging with ER-targeted Ca²⁺ indicator RCEPIA1er reveals no significant difference in basal [Ca²⁺]_{ER} between untreated HEK293 cells and cells subjected to 2-APB (50 μ M) and xestospongin c (5 μ M) treatment. *C*:and *D*: Ca²⁺ imaging in ER reveals no notable decay of luminal Ca²⁺ following ATP treatment (in Ca⁺²-free ECF) in 2-APB (50 μ M) and xestospongin c (3 μ M)-treated cells. Untreated control cells (no blocker) showed quick release of ([Ca²⁺]_{ER} by ATP.

S 3. LRRC8A does not affect ATP-induced release of Ca²⁺ from stores.

A: Characteristic $[Ca^{2+}]_c$ traces in response to 100 μ M ATP in nominally Ca^{2+} -free external buffer in HEK-293 Cells. Overexpression or knockdown of LRRC8A did not affect ATP-induced $[Ca^{2+}]_c$ rise. B: Cumulative data (mean \pm SEM, n = 41-50) showing the level of LRRC8A does not influence $[Ca^{2+}]_c$ rise elicited by ATP in Ca^{2+} -free conditions.

S 4. Modulation of $[Ca^{2+}]_{ER}$ leak rate by LRRC8B.

A: Typical traces showing the decay of luminal Ca^{2+} ($[Ca^{2+}]_{ER}$), by blocking SERCA pump with $1\mu M$ TG. $[Ca^{2+}]_{ER}$ was measured with Mag-fura, as described in methods section. LRRC8B overexpressed and knocked down increased and decreased the decay rate respectively. B: Cumulative data for decrease in % fluorescence in $t_{1/2}$ (mean \pm SEM, n=16-27) are plotted.

Table S1. Antibody Validation

Protein	Antibody catalogue no.	Company	References	Dilution
LRRC8A	# HPA016811	Sigma Aldrich	Voss FK et. al Science, 344(6184), 634-638 (2014)	1:500
LRRC8B	# HPA017950	Sigma Aldrich	Voss FK et. al Science, 344(6184), 634-638 (2014)	1:500
β-actin	# A5441	Sigma Aldrich	Hu W et. al PNAS, 107(16), 7455-7460 (2010)	1:1000
ERp72	# D70D12	Cell SignallingTechnology	Kebede MA et al. <i>J Clin Invest.</i> 2014 Oct;124(10):4240- 56	1:1000
Connexin 43	#3512	Cell Signalling Technology	Nimlamool W et al. <i>Mol Biol Cell</i> . 2015 Aug1;26(15):2755-	1:1000

			68.	
VDAC	# D73D12	Cell Signalling Technology	Tewari D et al. Biochim Biophys Acta 1848 (1 Pt A), 151-158. 2014 Oct 23	1:1000
PARP	# 46D11	Cell Signalling Technology	De Waal L et al. Nat Chem Biol. 2016 Feb;12(2):102-8.	1:1000
Bcl2	# sc-7382	Santa Cruz Biotechnology	Pilchova I et al. Cell Mol Neurobiol. 2015 Jan;35(1):23-31	1:750