

Fig. S1. Control experiments showing the specificity of FZ-3 and NBD-TPEA for Zn and the quenching of NBD-TPEA by Cu. A.-C. Cells were incubated with the different chelators or CuSO₄ at the indicated concentrations for 3 hrs before the staining with FZ-3 and NBD-TPEA was performed. Afterwards cells were fed with 3 μm and images were taken by live-microscopy. Importantly, the chelators and CuSO₄ were present throughout the experiment.

Fig. S2. ZntA-mCherry is not present on BCPs. A. and B. Cells expressing ZntA-mCherry were stained with FZ-3 and NBD-TPEA and fed with 3 μ m latex beads. Images were taken live. Asterisks label BCPs, arrows point to FZ-3-positive CV-bladders. Scale bars 10 μ m (A), 5 μ m (B).

Fig. S3. ZntB-mCherry decorates BCPs and does not co-localize with ER- and CV-markers. A. ZntB is present at BCPs at the lysosomal maturation stage. Cells expressing ZntB-mCherry were stained with NBD-TPEA and fed with 3 μ m latex beads. Images were taken live. Scale bar, 5 μ m. B. ZntB-mCherry co-localizes with the vATPase at BCPs. Scale bar, 10 μ m. C. and D. ZntB-mCherry does not localize at the ER and the at the CV. ZntB-mCherry expressing cells were fixed and stained with antibodies against PDI (C) and Rhesus50 (D). Nuclei were stained with DAPI. Scale bars, 10 μ m (C) and 5 μ m (D). Asterisks label a BCPs, C: tubular network of the CV, N: nucleus.

Recombination site and StarCombinase™ recognition area

Unique restriction site

D

1: zntB forward / pGWDl2 2: pGWDl1 / zntB reverse

3: zntB forward & reverse

Fig. S4. Generation of a *zntA* KO by homologous recombination and localization of the insertion in the *zntB* KO. A. Schematic drawing of the *zntA*-encoding gene locus (ORF, blue) flanked by noncoding segments. For gene disruption, the resistance cassette (BSr, green) was integrated removing a segment in the middle of the gene (between the inside forward/inside reverse primers) using the StarCombinase and the StarGate cloning kit. The red arrows indicate primers that were used to monitor correct integration. B. PCR-analysis of two *zntA* mutants (#1 and #2) and wild type (#3). Using the flanking forward/BSR reverse or the flanking reverse/BSR forward primer combinations small products were obtained in both mutants, but not in the wild type. The inside forward/inside reverse primer combination yielded a small product in the wild type, but not in the mutants. Experiments were performed using mutant #1. C. The restriction-mediated insertion of the *zntB* KO interrupts the gene approximately in the middle at chromosomal position 5364176 (Chromosome 3). D. A diagnostic PCR was performed to confirm the insertion into *zntB* using the primers indicated in C.

Fig. S5. ZntB-mCherry is localized at the *M. smegmatis***-containing phagosome.** Cells expressing ZntB-mCherry were stained with NBD-TPEA and fed with *M. smegmatis*. Images were recorded live. Scale bar, 5 μm. Arrows label phagosomes, asterisks point to zincosomes.

Fig. S6. The *zntA E. coli* KO is not susceptible to increasing concentrations of CuSO₄, FeCl₂, MnCl₂. *E. coli* strains were incubated in LB. Metals were added as indicated. The OD₆₀₀ was measured with the help of a 96-well plate reader (SpectraMax i3, Molecular Devices). Statistical differences were calculated with a Bonferroni post hoc test after two-way ANOVA. Significantly different values were indicated by an asterisk (* P < 0.5, ** P < 0.01).

Table S1. Dictyostelium material used for this study.

Dictyostelium strains	Plasmids used for transformation	Reference
Ax2(Ka) ZntA-mCherry	ZntA-mCherry	This study
	(see below)	
Ax2(Ka) ZntB-mCherry	ZntB-mCherry	This study
	(see below)	
Ax2(Ka) ZntC-mCherry	ZntC-mCherry	This study
	(see below)	
Ax2(Ka) ZntD-mCherry	ZntD-mCherry	This study
	(see below)	·
Ax2(Ka) zntA KO	See below	This study
Ax2(Ka) zntA KO	mCherry-ZntA	This study
mCherry-ZntA	(see below)	·
AX4 zntB KO	·	REMI library Prof. Christopher
		Thompson
AX4 zntB KO	ZntB-mCherry	This study
ZntB-mCherry	(see below)	·
Ax2(Ka) AmtA-mCherry	,	(Barisch et al., 2015)
Ax2(Ka) VatB-RFP		(Carnell et al., 2011)
Ax2(Ka) RFP-VacA		This study
AX2 wshA KO		(Carnell et al., 2011)
AX2 pikfyve KO		(Buckley et al., 2018)
Plasmids generated for	Insert	Plasmid &Reference
this work		
ZntA-mCherry	zntA gDNA(DDB_G0283629)	pDM1044 (Veltman et al., 2009)
ZntB-mCherry	zntB gDNA(DDB_G0282067)	pDM1044 (Veltman et al., 2009)
ZntC-mCherry	<i>zntC</i> cDNA(<i>DDB_G0269332</i>)	pDM1044 (Veltman et al., 2009)
ZntD-mCherry	zntD cDNA(DDB_G0291141)	pDM1044 (Veltman et al., 2009)
mCherry-ZntA	zntA amplified from ZntA-mCherry	pDM1042 (Veltman et al., 2009)
ZntA KO plasmid	pKOSG-IBA-ZntA	StarGate® Acceptor Vector
	(please see Materials and Methods)	pKOS-IBA-Dicty1
	-	(Wiegand et al., 2011)
		pDM 324 (Veltman et al., 2009)

Movie 1. Zn is expelled from the cells when the CV discharges. For more information, see Fig. 1C.

Movie 2. Dynamics of Zn in BCPs of NBD-TPEA-labelled cells. For more information, see Fig. 2A.

Movie 3. Dynamics of Zn in BCPs of FZ-3-labelled cells. For more information, see Fig. 2C.

Movie 4. Zincosome-BCP-fusion. For more information, see Fig. 3A.

Movie 5. Zincosome-BCP-fission. For more information, see Fig. 3C.

Movie 6. Dynamics of ZntB-mCherry at the BCP. For more information, see Fig. 4D.