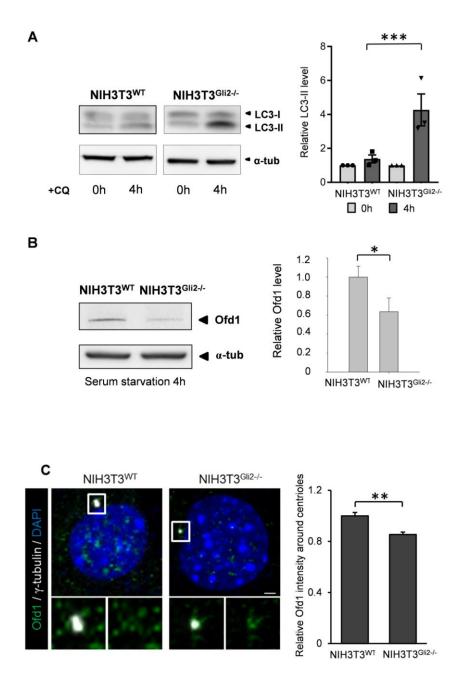
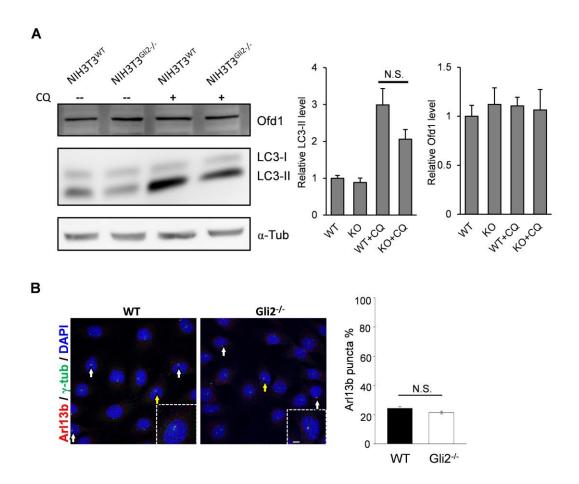
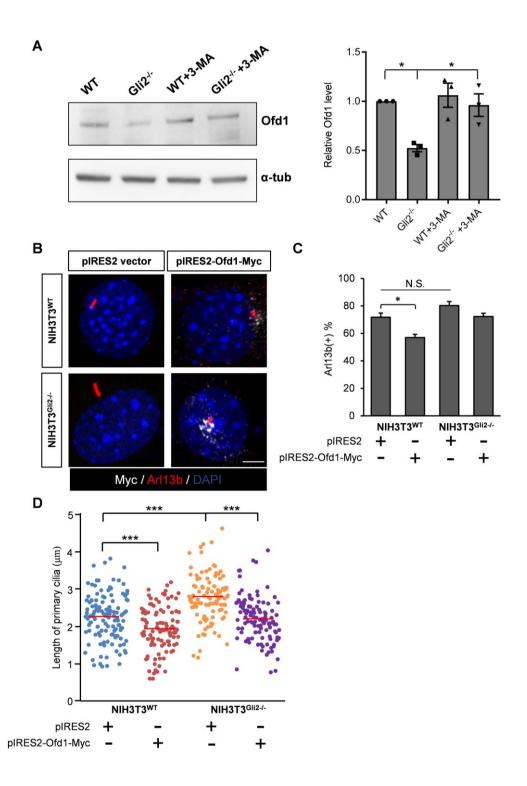


Figure S1. Selection and validation of ideal NIH3T3 clone for Gli2 knockout


- (A)Protein lysates from NIH3T3 cells, transfected with Cas9 along with either sgRNA vector, Gli2sgRNA#1, Gli2sgRNA#2 or Gli2sgRNA#3, were immunoblotted for Gli2 or GAPDH (loading control). Bar graph along with individual data points represents the relative Gli2 protein level in each group (n = 3 trials). One-way ANOVA, post-hoc: Bonferroni test, *: p<0.05, **: p<0.01, ***: p<0.001.
- (B) NIH3T3 cells were transfected with Gli2sgRNA#1 and Cas9, followed by expansion of 104 single cells for genomic DNA sequencing. Among them, clone #2-8, #2-10, #3-11, and #4-27 showed disruptions in the exon 2 portion of *Gli2* gene next to the sgRNA targeting sequence (blue).
- (C) Gli-luciferase assay of the clone #2-8, #2-10, #3-11, and #4-27. Bar graph along with individual data points shows that the luciferase activity in clone #4-27 was significantly decreased compared to the wild type (n = 3 trials).


- (A) Statistics for the percentage of ciliated cells in NIH3T3^{WT} and NIH3T3^{Gli2-/-} cells after serum starvation for indicated times. Bar graph exhibited that there is no difference between NIH3T3^{WT} cells and NIH3T3^{Gli2-/-} cells possessing the primary cilium labelled by Arl13b. Cell were counted from 3 trials and cell numbers are listed as (WT, Gli2^{-/-}): 0hr (225, 299); 4hr (170, 179); 8hr (257, 333); 12hr (252, 281); 24hr (320, 313); 48hr (90, 93). Student's *t* test: *p*>0.05.
- (B) Gli2 expression in NIH3T3 cells transfected with shRNAs. Protein lysates from NIH3T3 cells transfected with sh-Ctrl, sh-*Gli2* #1, and sh-*Gli2* #2 were immunoblotted with antibody against Gli2 and α -tubulin (α -Tub, loading control). Bar graph along with individual data points shows decreased Gli2 expression by both shRNAs (n = 3). One-way ANOVA, post-hoc: Bonferroni test, **: p < 0.01.

(C) Examples of primary cilia in live NIH3T3 cells transfected with Gli2 overexpression or shRNA constructs after serum starvation for 24 hrs. PC2-Arl13bGFP (Green) and pmCherry-Centrin II (Red) were co-transfected to mark the primary cilia and basal bodies. Scatter plots shows that Gli2 knockdown by sh-*Gli2* #1 (n = 71 cells) or sh-*Gli2* #2 (n = 54 cells) increased the length of primary cilia compared to control cells (n = 37 cells), while Gli2-OX (n = 76 cells) slightly reduced the length of primary cilia. Kruskal Wallis test: p<0.001. Post-hoc: Mann-Whitney U test, *: p<0.05.


Figure S3. The induction of LC3-II and the reduction of Ofd1 in Gli2 knockout cells

- (A) Protein lysates from NIH3T3^{WT} cells and NIH3T3^{Gli2-/-} cells were treated with CQ for 0h and 4h under serum free condition, and then immunoblotted with antibody against LC3, and α -tubulin (α -tub, loading control). Bar graph along with individual data points exhibits the relative protein level of LC3-II at 4h compared to the basal condition (0h) in each group. N = 3 trials, Mann-Whitney *U* test, ***: *p*<0.001.
- (B) Protein lysates were collected from NIH3T3^{WT} and NIH3T3^{Gli2-/-} cells after serum starvation for 4h, and immunoblotted for Ofd1, and α -tub (loading control). Bar graph shows the relative protein levels of Ofd1 in NIH3T3^{Gli2-/-} cells compared to WT cells; n = 6 trials, *: *p*< 0.05, student's *t* test.
- (C) Immunostaining of Ofd1 satellites (Green) around the centrioles (γ -tubulin, white) in NIH3T3^{WT} cells and NIH3T3^{Gli2-/-} cells after serum starvation for 24h. Boxed regions are enlarged in the bottom. Scale bar: 2µm. Bar graph shows the relative Ofd1 intensity surrounding the centrioles. NIH3T3^{WT}: n = 169 cells, NIH3T3^{Gli2-/-}: n = 127 cells. Mann-Whitney *U* test, **: *p*<0.01.

Figure S4. Comparable autophagy activity, Ofd1 protein level and percentage of primary cilium in Gli2 knockout cells under basal condition

- (A) Protein lysates from NIH3T3^{WT} and NIH3T3^{Gli2-/-} cells were treated with or without CQ for 4h under serum-rich condition, following by immunoblotting with antibody against Ofd1, LC3, and α -tubulin (α -tub, loading control). Bar graph displayed the relative protein level in each condition. n = 6 trials; ANOVA test, post-hoc: Bonferroni test.
- (B) Immunostaining of primary cilia (Arl13b, red), centrioles (γ-tubulin, green) and DAPI (blue) under serum-rich condition. Arl13b+ puncta (arrows) were seldom detectable in both NIH3T3^{WT} and NIH3T3^{Gli2-/-} cells. Centrioles pointed by the yellow arrows were magnified in the inlets. Scale bar: 5µm. Bar graph represents the percentage of centrioles possessing the Arl13b+ puncta. N = 225 in NIH3T3^{WT} cells, N = 299 in NIH3T3^{Gli2-/-} cells; student's *t* test, *p*>0.05.

Figure S5. Rescue effect of Ofd1 reduction and ciliary elongation in Gli2 knockout cells treated with autophagy inhibitors and Ofd1 overexpression

- (A) Protein lysates from NIH3T3^{WT} cells and NIH3T3^{Gli2-/-} cells treated with or without 3-MA during serum starvation for 4h, were immunoblotted with antibodies against Ofd1 and α -tubulin. Bar graph along with individual data points represents the relative Ofd1 protein level in each condition. n = 3, ANOVA: p = 0.008; post-hoc: Bonferroni test, *: p < 0.05.
- (B) Immunostaining of Arl13b (red), myc-tag (Gray) and DAPI (blue) in NIH3T3^{WT} and NIH3T3^{Gli2-} ^{/-} cells transfected with either vector (pIRES2) or myc-tagged Ofd1 (pIRES2-Ofd1-Myc) and

serum starved for 24h. Expression of Ofd1 shortened the length of primary cilia. Scale bar: 5µm.

- (C) Bar graph represents the percentage of ciliated cells in each group. number of cells (WT, Gli2^{-/-}) transfected with pIRES2 = (291, 182); with pIRES2-Ofd1-myc = (208, 214). ANOVA test, post-hoc: Bonferroni test, *: p<0.05.</p>
- (D) Scatter plot exhibits the length of individual primary cilium in each group. Red lines mark the mean. Expression of Ofd1-myc significantly reversed the lengthening of primary cilia in NIH3T3^{Gli2-/-} cells. In NIH3T3^{WT} cells, n = 126 and 104 cilia for pIRES2 and pIRES2-Ofd1-myc respectively; meanwhile, n = 104 and 118 cilia for NIH3T3^{Gli2-/-} cells transfected with pIRES2 and pIRES2-Ofd1-myc respectively. ANOVA test: p<0.001. Post-hoc: Bonferroni test, ***: p<0.001.

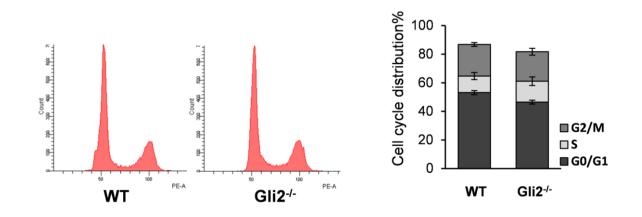
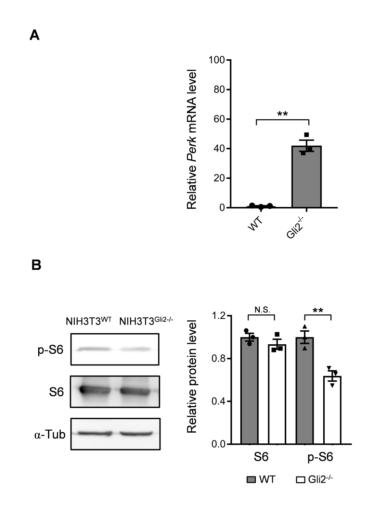



Figure S6. Gli2 knockout cells exhibit similar cell cycle distribution as wild type cells Cell cycle analysis by flow cytometry in NIH3T3^{WT} and NIH3T3^{Gli2-/-} cells for 24 hours after seeding. Bar graph indicates that the percentages of G0/G1, S and G2/M phases were not significant different between NIH3T3^{WT} and NIH3T3^{Gli2-/-} cells (n = 3 trials). Student's *t* test, p>0.05.

Figure S7. Potential mechanism in downstream of Gli2 for autophagy activation

- (A) RT-qPCR for the expression of *Perk* mRNA upon serum starvation for 24h. Bar graph along with individual data points shows a significant increase in *Perk* mRNA in NIH3T3^{Gli2-/-} cells compared to NIH3T3^{WT}. n = 3 trials. Student's *t* test, **: p < 0.01.
- (B) Protein lysates from NIH3T3^{WT} cells and NIH3T3^{Gli2-/-} cells after serum starvation for 4h, and then immunoblotted with antibody against phospho-ribosomal protein S6 (p-S6), S6 and α -tubulin. Bar graph along with individual data points represents a significant decresase of the phosphorylation in S6 in NIH3T3^{Gli2-/-} cells compared to NIH3T3^{WT} cells. n = 3 trials. Student's *t* test, **: p < 0.01.

No.	Direction	Sequence
<i>Gli2</i> sgRNA#1	Forward	TTTCTTGGCTTTATATATCTTGTGGAAAGGACGAAACA CCGCCGCAGCTGTAGCCGCCCA
	Reverse	GACTAGCCTTATTTTAACTTGCTATTTCTAGCTCTAAAA CTGGGCGGCTACAGCTGCGGC
<i>Gli2</i> sgRNA#2	Forward	TTTCTTGGCTTTATATATCTTGTGGAAAGGACGAAACA CCGTGCGGCCACCGCCAGAGGAC
	Reverse	GACTAGCCTTATTTTAACTTGCTATTTCTAGCTCTAAAA CGTCCTCTGGCGGTGGCCGCAC
<i>Gli2</i> sgRNA#3	Forward	TTTCTTGGCTTTATATATCTTGTGGAAAGGACGAAACA CCGACAGCAGCTTCCCCGACCC
	Reverse	GACTAGCCTTATTTTAACTTGCTATTTCTAGCTCTAAAA CGGGTCGGGGAAGCTGCTGTC

Table S1. Sequences for Gli2 guide RNA used in this study

Table S2. Query coverage of candidate Gli2 KO lines.

NIH3T3 cell number	Query cover (%)
2-8	90%
2-10	99%
3-11	22%
4-27	10%