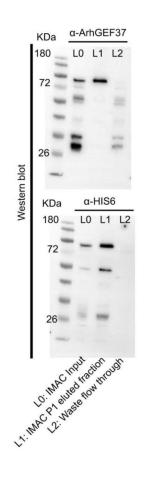


(60:20:10:10)



POPC/DOPC/Chol

(70:20:10)

+ 10kTe

- 10kTe⁻¹

Brain Lipid Extract

Fig. S1. ArhGEF37 structure and membrane binding analysis.

(A) Sequence alignment of BAR domains from ArhGEF37 and different homologs (indicated). Colour-code indicates conserved hydrophobic (blue) and non-hydrophobic (grey) residues. (B) Modelled domains of individual ArhGEF37 domains. Corresponding structure models depicting electrostatic surface potential (red, -10kTe⁻¹, blue, +10kTe⁻¹) are shown next to it. (C) Complete Coomassie and Western blots (corresponding to Fig. 1E). (D) From left to right, measurements of ArhGEF37 binding to POPS/DOPC/Chol/PI(4,5)P₂, POPC/DOPC/Chol and Brain lipid extract (corresponding to Fig. 1E). (E) From left to right, measurements of ArhGEF37 binding to POPS/DOPC/Chol/PI(4,5)P₂ at 1000 mM, 250 mM and 125 mM, respectively (corresponding to Fig. 1E).

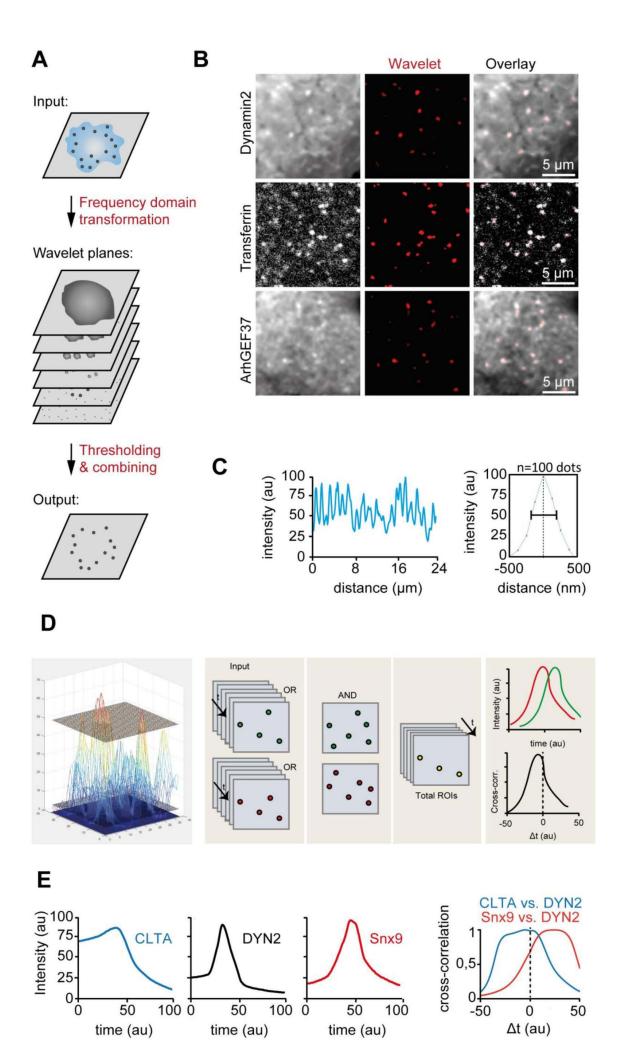
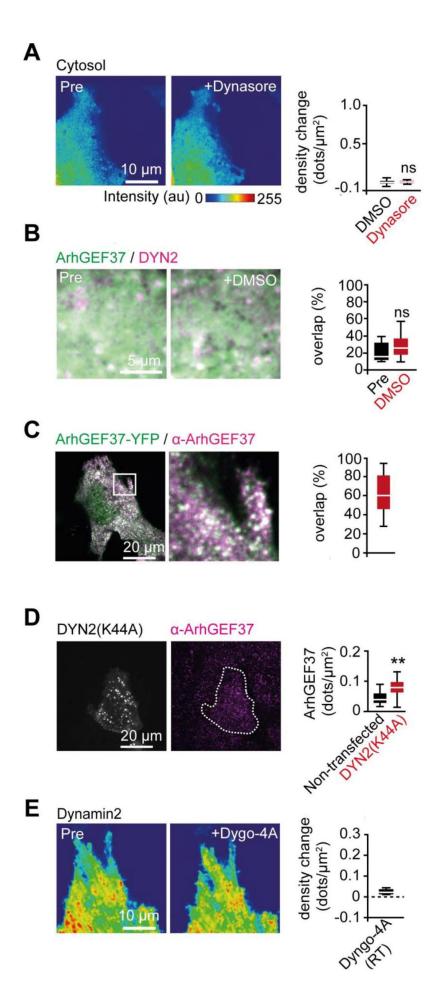
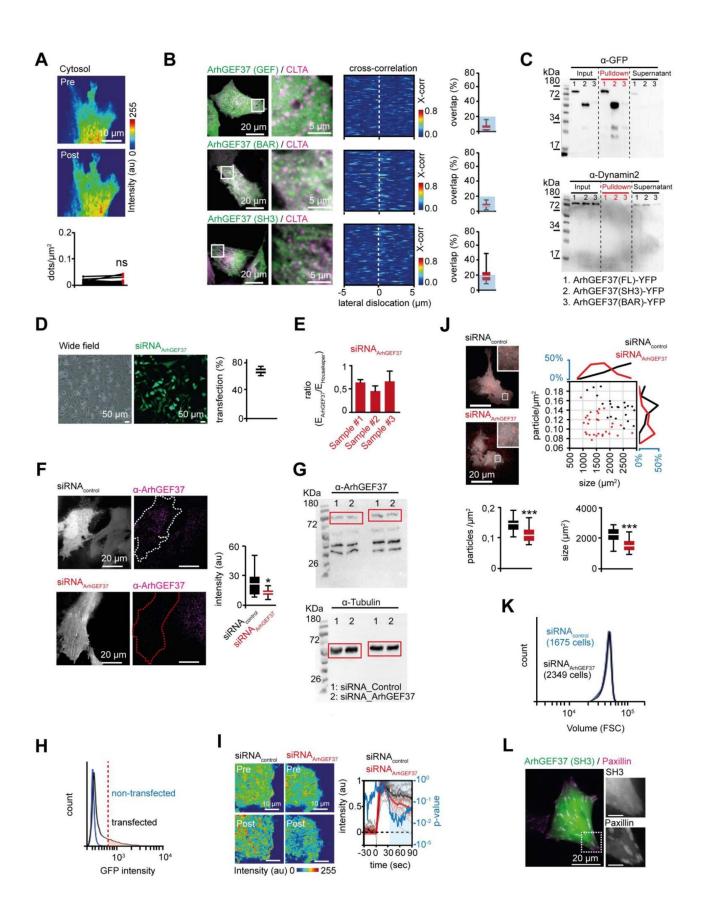




Fig. S2. Image analysis tools to study ArhGEF37 function. (A) Scheme depicting the principle of à trous wavelet filtering. In brief, the filter divides the input image into wavelet planes based on different frequencies of signals in the image. The 1st order wavelet plane consists of noise (highest frequency), followed by wavelet planes with decreasing frequencies associated with increasing structure size in the spatial domain. By combining the 2nd and 3rd wavelet planes, followed by a subsequently thresholding, the final output image is generated. (B) Quality controls for *à trous* wavelet filtering analysis. To the left, raw images of cells transfected with fluorescently labelled Dynamin2 (DYN2), transferrin and ArhGEF37, respectively. In the middle, result of à trous wavelet filtering for respective images (red). To the right, overlay of raw data (grey) and filter results (red). (C) Line-scan (left) and overlay of 100 individual puncta (right) suggest diffraction-limited ArhGEF37 aggregates. (D) Scheme showing workflow of custom made script for temporal cross-correlation analysis. In brief, individual puncta were isolated, and intensity profiles measured along the z-axis (i.e. time). To determine the temporal order of appearance, intensity profiles within individual puncta (green and red) are then cross-correlated. (E) In silico testing of temporal cross-correlation analysis. Published data on recruitment kinetics of CTLA, DYN2 and Snx9 was used to generate intensity traces. Note that the software accurately predicts that CTLA precedes DYN2 (blue) while Snx9 follows DYN2 (red). Scale bar, (B) 5 µm.

Fig. S3. Perturbation controls for ArhGEF37 recruitment. (A) No pattern

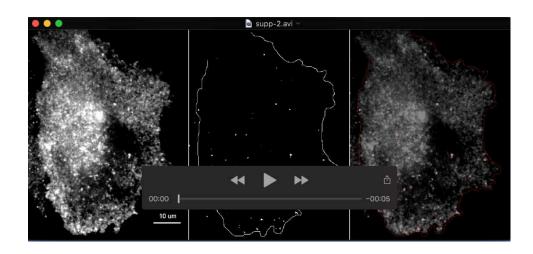
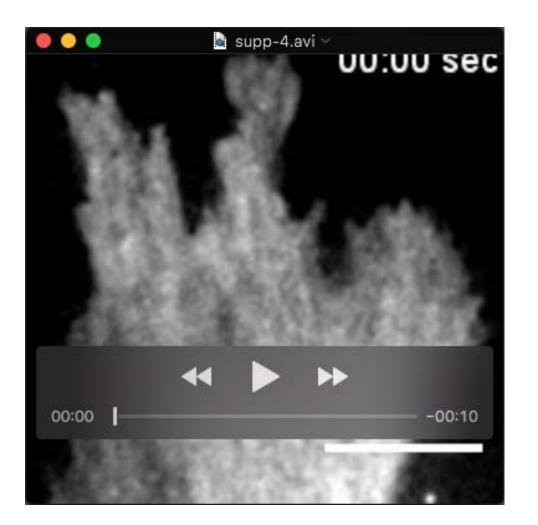

formation in cytosol after Dynasore addition. To the left, cell expressing cytosolic CFP before (pre) and after (post) exposure to Dynasore. To the right, analysis for change in dots/µm² upon addition of DMSO (0.00±0.03 dots/µm², black, n = 12 cells, mean±SD) and Dynasore (0.00±0.01 dots/µm², red, n = 13 cells, mean ± SD). (B) DMSO does not trigger increased co-localization of DYN2 and ArhGEF37. Cells were transfected with ArhGEF37 (green) and DYN2 (magenta). Note no significant change in total overlap percentage upon DMSO addition (pre: 21 ± 10%, black; post: $27 \pm 13\%$, red; n = 11 cells, mean \pm SD). (C) Specificity test for ArhGEF37 antibody. Cells were transfected with ArhGEF37 for 24 hours, fixed and stained with antibody directed against ArhGEF37. Following wavelet-transformation, overlap percentage was determined ($62\pm19\%$, n = 19). Note: since antibody directed against ArhGEF37 yields multiple bands of various molecular weights on Western blot (Supplemental Fig. 4G), unspecific binding partners need to be considered. (D) Expression of dominant-negative DYN2(K44A) yields an increase in ArhGEF37 antibody signal. Cells transfected with DYN2(K44A) for 24 hours were fixed and stained with antibody directed against ArhGEF37. Following wavelet-transformation, puncta density was determined for transfected $(0.08\pm0.02 \text{ dots/}\mu\text{m}^2)$: n = 35 cells) and non-transfected (0.04 \pm 0.02 dots/µm², n = 18 cells) cells. (E) Temperature shift changes Dyngo4A-dependent DYN2 recruitment. Cells were transfected with DYN2 for 24 hours and incubated for 30 minutes with Dyngo-4A at room temperature. Note differences in enrichment of DYN2 to the membrane compared to 37 °C (shown in **Fig. 3A**). Scale bars, (A, E) 10 μm; (B) 5 μm; (C, D) 20 μm.

Fig. S4. Localization controls and ArhGEF37 knockdown validation.

(A) Hyperosmotic shock does not change cytosolic signal. Cells expressing cytosolic CFP before (pre) and after (post) hyperosmotic shock. Below, quantification of particles (dots/ μ m²) is shown (n = 11 cells). (**B**) Co-localization for different ArhGEF37 domains and CLTA. Left, cells co-expressing indicated ArhGEF37 constructs (green) and CLTA (magenta). Middle panel depict spatial cross-correlation analysis of truncated versions of ArhGEF37 vs. CLTA. To the right, overlap percentage for CTLA and the GEF (5 \pm 4%, n = 21 cells), BAR (7 \pm 3%, n = 16 cells) and SH3 (20 \pm 9%, n = 18 cells) domains (Mean \pm SD). Blue boxes in the graphs are added as guidance to the eye. (C) Pulldown assay yields no apparent interaction between ArhGEF37 and Dynamin2. From left to right, cell lysate (left), pulldown (middle) and supernatant (right) of cells transfected with full length ArhGEF37 (lane 1), the isolated SH3 domain of ArhGEF37 (lane 2), and the isolated BAR domain of ArhGEF37 (lane 3). Upon pulldown, samples were loaded on gel and stained with antibodies directed against GFP (top gel) and Dynamin2 (bottom gel), respectively. (D) Representative image of cells co-transfected with siRNA directed against ArhGEF37 (siRNA_{ArhGEF37}) and fluorescence marker (green). Graph depicts transfection efficiency ($65 \pm 3\%$ n = 4 technical repeats, mean \pm SD). (E) Analysis of ArhGEF37 knockdown efficiency via qPCR. 48 hours post transfection, cells transfected with siRNA_{ArhGEF37} yield 31± 9% (S1), 53± 23% (S2) and 26± 40% (S3) reduction in mRNA levels (3 biological repeats, each with n = 3 technical repeats, median \pm SD). Note that transfection efficiency of 65 \pm 3% needs to be considered. (F) Knockdown of ArhGEF37 yields reduced ArhGEF37 immunofluorescence signal. To the left cells transfected with siRNA_{control} (black, top) or siRNA_{ArhGEF37} (red, bottom) are shown. Difference in immunofluorescence in control (21 ± 11 au, black, n = 17


cells) and ArhGEF37 knockdown (12 \pm 3 au, red, n = 19 cells) are shown to the right. (Mean \pm SD; Mann Whitney test; * p \leq 0.05). (G) Western blot analysis of ArhGEF37 knockdown efficiency. Cells were transfected for 48 hours with siRNAcontrol or siRNA_{ArhGEF37}. Upon isolation, protein samples were loaded and stained with antibody directed against ArhGEF37 (top) and tubulin (bottom). Two separate biological repeats yield signal reduction of 38% (left) and 22% (right), respectively. Again, note that transfection efficiency of 65±3% needs to be considered. (H) FACS analysis (10'000 cells/condition) depicting signal separation for GFP-transfected cells (black) vs. non-transfected cells (blue). Threshold used in Fig. 4G for gating (dashed red line) was set at an arbitrary grey value of 670, yielding <1% false positives. (I) ArhGEF37 retains DYN2 at endocytotic sites. Cells co-transfected with siRNA control (black) or siRNA ArhGEF37 (red) and fluorescently tagged DYN2 before (top) and after (bottom) hyperosmotic shock. To the right, kinetics and statistical analysis (blue) are shown. As above, bold lines depict the median, thin lines individual experiments (n = 14 cells for siRNA_{control} and siRNA_{ArhGEF37}, respectively). (J) Knockdown of ArhGEF37 reduces transferrin uptake and area of adherent cells. Cells transfected with fluorescence marker and control siRNA or siRNA directed against ArhGEF37 after incubation with transferrin-Alexa647 for 10 minutes at 37 °C. To the right, scatter plot depicting cell area vs. transferrin uptake for siRNA control (black, n = 22 cells) and siRNA_{ArbGEE37} (red, cells, n = 29 cells), respectively. Below, quantification of transferrin uptake for siRNA control (0.14±0.02 particles/µm², black) and siRNA_{ArhGEF37} (0.10±0.02 particles/um², red), respectively, show a slight but significant reduction in transferrin uptake. Likewise, quantification of cell area upon transfection with siRNA_{control} (2216±490 µm², black) and siRNA_{ArhGEF37} (1585±446 µm², red) show a significant difference in cell area. (**K**) Knockdown of ArhGEF37 does not change cell volume in FACS analysis. Cells co-transfected with fluorescence marker and siRNA_{control} (blue) or siRNA_{ArhGEF37} (black). Forward scatter does not yield apparent changes in cell volume. (**L**) The SH3 domain of ArhGEF37 localizes to paxillin-positive focal adhesions. Cells were co-transfected with the isolated SH3 domain of ArhGEF37 (green) and the focal adhesion protein paxillin (magenta). Note slight enrichment of the SH3 domain of ArhGEF37 at focal adhesions. Statistics: * p ≤ 0.05, ** p ≤ 0.01, *** p ≤ 0.001; Mann Whitney test; Error bars represent SEM. Scale bars, (A, I) 10 µm; (B, L) 20 µm, 5 µm; (D) 50 µm; (F) 20 µm.

Movie 1. ArhGEF37 recruitment analysed via \dot{a} trous wavelet filtering. HeLa cell transfected with ArhGEF37. To the left, raw data of basal PM. In the middle, same movie subjected to \dot{a} trous filtering. To the right, overlay of raw (grey) and filtered (red) data. Frames captured at 1 Hz. Scale bar, 10 µm.

Movie 2. DYN2 recruitment to the PM increases upon hyperosmotic shock. HeLa cell transfected with DYN2 and subjected to hyperosmotic shock (star). Individual frames captured at 1 Hz. Scale bar, 10 μ m.

Movie 3. ArhGEF37 recruitment to the PM increases upon hyperosmotic shock. HeLa cell transfected with ArhGEF37, followed by hyperosmotic shock (star). Frames were taken at 1 Hz. Scale bar, $10 \mu m$.

Movie 4. No change in cytosolic perturbation after hyperosmotic shock.

HeLa cell transfected with cytosolic marker and subjected to hyperosmotic shock (star). Individual frames were taken at 1 Hz. Scale bar, 10 μ m.

Movie 5. PM recruitment of BAR and SH3 domain of ArhGEF37 increase after hyper-osmotic shock. HeLa cells transfected with truncated versions of ArhGEF37 (GEF; BAR, SH3), and subjected to hyperosmotic shock (star). Individual frames were taken at 1 Hz. Scale bar, 10 µm.

Movie 6. 3D model depicting potential sites for ArhGEF37 enrichment during late phase of CME. Clathrin (blue), filamentous actin (green), Dynamin (yellow), and ArhGEF37 (red) are shown.

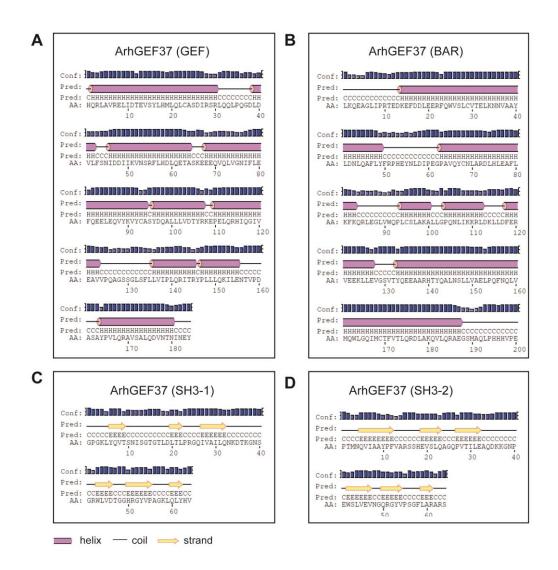


Table S1. Protein secondary structure prediction. Graphical representation of secondary structures predicted via PSIPRED for the following ArhGEF37 domains: GEF domain (**A**), BAR domain (**B**) and the two SH3 domains (**C** and **D**). For every amino acid, blue bars indicate confidence of the prediction. Black lines (letter code C), yellow arrows (letter code E) or purple cylinders (letter code H) indicate a predicted coil region, β-strand or α-helix, respectively.

Domain	PDB ID	Homologs
GEF	3EO2	RhoGEF domain of h-neuroepithelial cell transforming gene-1
	3GF9	Crystal structure of Human intersectin 2 RhoGEF domian
	1F5X	NMR structure of the Y174 autoinhibited DBL homology domain
BAR	4AVM	Crystal structure of N-BAR domain of h-bridging integrator 2
	2FIC	Crystal structure of BAR domain from human Bin1/Amphiphysin II
	1URU	Amphiphysin BAR domain from Drosophila
	4ATM	Crystal structure of BAR domain of human Amphiphysin, isoform 1
	3CAZ	Crystal structure of a BAR protein from Galdieria sulphuraria
SH3-1	1UHC	Solution structure of RSG1 RUH-002, SH3 domain of human DNMBP/ K1AA1010 protein
	1UG1	SH3 domain of hypothetical protein BAA76854.1
	1SEM	Structural determinants of peptide-binding orientation & of sequence specificity in SH3 domains.
SH3-2	1UHC	Solution structure of RSG1 RUH-002, SH3 domain of human DNMBP/ K1AA1010 protein
	2KBT	Attachment of an NMR-invisible solubility enhancement tag
	100T	SH3 domain from a S. cerevisiae hypothetical 40.4 kDa protein
	2K9G	Solution structure of 3 rd SH3 domain of the Cin85 adapter protein

Table S2. Structures used for homology modeling. For each

domain, both the PDB code and the name of the used homologs are indicated.

ArhGEF37 (GEF)			ArhGEF37 (BAR)				ArhGEF37 (SH3-1)					ArhGEF37 (SH3-2)				
Conf	Ner Score	P. Value	Homology	Conr	Ner Score	P.Vallue	Homology	ර්	jun	Ner Score	P. Value	Homology	Conr	Ner Score	P. Value	Homodo
CERT	93.853		3eo2	CERT	80.653					46.009		1ug1	HIGH	54.277	2e-04	1uhc
CERT	91.089		3gf9	CERT	80.423			100000000		43.404		1uhc	HIGH	47.418	8e-04	2kbt
CERT	90.799		2dfk	CERT	77.736					43.403		1sem	HIGH	46.865	9e-04	1oot
CERT	88.703		1f5x	CERT	77.724	7e-07		ME	DIUM	42.831	0.002	1gri	HIGH	46.802	1e-03	2k9g
CERT	84.763		1kz7	CERT	66.051	1.00		1000000		42.625		2drm	MEDIUM	46.559	0.001	2ydl
CERT	83.877		1foe	HIGH	54.144					42.326		1oot	MEDIUM	46.474	0.001	1gri
CERT	82.708		2pz1	HIGH	51.949			132352		41.910		2da9	MEDIUM	46.304	0.001	2dl7
CERT	81.786		2vrw	HIGH	50.475			0.533.677		41.396		2kbt	MEDIUM	45.693	0.001	1sem
CERT	81.746		1ki1	HIGH	49.456					40.912		1x2k	MEDIUM	45.324	0.001	2jte
CERT	81.581		3jv3	MEDIUM				10000		40.793		2rf0	MEDIUN	44.805	0.002	1zlm
CERT	80.679			MEDIUM						40.763		2k9g	MEDIUM	44.546	0.002	2yun
CERT	80.094			MEDIUM						40.645		2ydl	MEDIUM	44.508	0.002	1uti
CERT	80.028		2z0q	MEDIUM						40.511		2dl4	MEDIUM	44.454	0.002	1zsg
CERT	79.170		2rgn	MEDIUM				1000000		40.483		3ulr	MEDIUM	44.423	0.002	2g6f
CERT	78.270		2kr9	MEDIUM						40.384		2jte	MEDIUN	44.353	0.002	3m0u
CERT	78.029			MEDIUM						40.367		3ua7	MEDIUN	44.344	0.002	2a08
CERT	77.788		1xcg	MEDIUM						40.354		4hvw	MEDIUM	44.335	0.002	2d8h
CERT	75.961		3ky9	MEDIUM						40.312		3nmz	MEDIUN	44.229	0.002	1u5s
CERT	75.921		1nty	MEDIUM			5 5	100000		40.058		2d1x	MEDIUN	44.115	0.002	1x2k
CERT	74.619		4gou	MEDIUM						40.048		2vwf	MEDIUM	44.077	0.002	3ua7
CERT	73.090		1by1	MEDIUM			,			39.937		2yun	MEDIUN	44.002	0.002	4ag1
CERT	72.855		4gzu	MEDIUM			2v0o	100000		39.892		3zl7	MEDIUM	43.919	0.002	1neg
CERT	58.196		3mpx	MEDIUM				0.537.0550		39.883		2cre	MEDIUM	43.829	0.002	3ngp
HIGH	53.427		1dbh	MEDIUM			,			39.797		2dl7	MEDIUM	43.745	0.002	2drm
HIGH	51.539		3ksy		36.647			1.336655		39.630		2js2	MEDIUN	43.679	0.002	1wyx
LOW	32.702		3i9y	77.57.57.5		0.012		0.000000		39.565		2a08	MEDIUN	43.667	0.002	1x69
LOW	32.144		4m7c			0.012				39.490		1zsg	MEDIUN	43.578	0.002	2xmf
LOW	31.665					0.012	4fzs	100000		39.373		2ak5	MEDIUM	43.570	0.002	4afq
LOW	31.659		3edv			0.013	2r17	100.00100		39.343		1uti	MEDIUM	43.515	0.002	3ulr
LOW	31.304	0.035	3pdy	LOW	35.470	0.013	2fji	ME	DIUM	39.313	0.005	1ng2	MEDIUN	43.475	0.002	2ak5

Conf. : The hit confidence category Net Score: The GenTHREADER raw score

Table S3. Fold-based homolog search. A list of homologs found using the fold-based homolog searching server pGenTHREADER. For every individual domain, the 30 top scoring hits are detailed with indications of the level of confidence, the pGenTHREADER Net Score, the p-value and the PDB accession

code.

Gene	RefSeq access no.	Forward primer (5 ⁻³)	Reverse primer (5´-3´)				
ArhGEF37	NM_001001669	ATCCTCCAGGTCAGGGAGT	TGCGGCAACTGCTGGAG				
		TGAACCAGGTCATAGCCGC	CCAAGAAGCCAGAAGGCACA				
OAZ	NM_004152	TAACTGGCCAACAGTGCTGA	ATGAAGACATGGTCGGCTCG				
RPS13	NM_001017	GCTCTCCTTTCGTTGCCTGA	TAGGGTAAAGCCGATGGGA				

Table S4. List of forward and reverse primers used for qPCR. OAZ

stands for Ornithine decarboxylase antizyme, and RPS13 for Ribosomal protein S13.