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ABSTRACT
Cell imaging has entered the ‘Big Data’ era. New technologies in light
microscopy and molecular biology have led to an explosion in high-
content, dynamic and multidimensional imaging data. Similar to the
‘omics’ fields two decades ago, our current ability to process, visualize,
integrate and mine this new generation of cell imaging data is becoming
a critical bottleneck in advancing cell biology. Computation, traditionally
used to quantitatively test specific hypotheses, must now also enable
iterative hypothesis generation and testing by deciphering hidden
biologically meaningful patterns in complex, dynamic or high-
dimensional cell image data. Data science is uniquely positioned to
aid in this process. In this Perspective, we survey the rapidly expanding
new field of data science in cell imaging. Specifically, we highlight how
data science tools are used within current image analysis pipelines,
propose a computation-first approach to derive new hypotheses from
cell image data, identify challenges and describe the next frontiers
where we believe data science will make an impact. We also outline
steps to ensure broad access to these powerful tools – democratizing
infrastructure availability, developing sensitive, robust and usable tools,
and promoting interdisciplinary training to both familiarize biologists with
data science and expose data scientists to cell imaging.
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Introduction
Microscopy provides visual access to cell appearance, organization
and behavior, enabling us to discover new biology by observing
cells in their basal and perturbed states. The intricate beauty of
microscopy images is often engrossing. However, a digital
microscopy image is a sequence of numerical values and can be
interpreted not only visually, but also via mathematical analysis.
Many techniques have been developed for cell biology that take
advantage of the dual nature of microscopy images by using their
quantitative representation to test hypotheses articulated after
carefully viewing them (Ellenberg et al., 2018).
The approach of first looking and then subsequently quantifying

microscopy images is becoming increasingly difficult because
microscopy for cell biology now entails more –more automation for
high-content image acquisition, more modes of microscopy that
generate larger datasets, and more microscopes, enabling greater
access to microscopy experiments by more people. Beyond
generating larger and larger datasets, these advances allow us to
test biological hypotheses requiring complex image data that might
extend across wide spatial scales, long time-frames or many

channels. Even a single complex image, such as a dense 3Dmesh of
actin or a spheroid of cells, can be too complicated to visually
interpret. Humans have an amazing capacity to spot patterns in
visual data, but the increased volume and complexity of modern cell
imaging data makes visual interpretation infeasible. To draw
biological conclusions from ever larger and more-complex
imaging datasets, we must change how we interpret cell image
data (Ouyang and Zimmer, 2017).

Consider the example of a recent COVID-19 drug screen with
300,000 five-channel immunofluorescence images (Heiser et al., 2020
preprint). It would not be feasible to visually assess and interpret such a
large screen. Instead, a deep convolutional neural network, which is a
machine-learning technique, was used to automatically extract 1024
properties from each image for statistical analysis, and the results were
interpreted and visualized to communicatewith other scientists and the
general public. This example follows a new paradigm for drawing
biological conclusions from complex or high-volume imaging data.
Rather than looking and then subsequently quantifying, the order is
switched, first computationally analyzing images to develop and test
biological hypotheses and only then moving back to the image data to
interpret the results and communicate findings (see Fig. 1). In this
Perspective, we present the state of data science in cell imaging, which
is currently dominated by data science-based tool building for
automated quantification of routine bioimage processing. We
distinguish these ‘low-level’, signal-driven, tools from ‘high-level’,
biology-driven, data science, where hypotheses are raised and
biological insights are derived from complex cell image data. Low-
level tasks are enabling technologies to address existing questions,
whereas high-level tasks, which build upon low-level tasks, open up
whole new categories of currently inaccessible questions. Data science
has the potential to revolutionize microscopy-based cell biology, but
only if infrastructure democratization and cross-disciplinary training
are advanced to enable high-level data science in cell imaging.

Data science in cell biology
With the volume and complexity of imaging data increasing, we now
need computation to automatically perform tasks across large datasets
and to reframe complex data via pattern detection and visualization.
Data science, an emerging interdisciplinary field that involves the
development and application of computational tools to extract
domain-specific insights from large and/or complex datasets, has
already begun to supply the needed toolbox. Although the boundaries
of data science remain fluid, the field combines domain knowledge
with techniques from mathematics, statistics, computer science and
information sciences, such as machine learning, to identify patterns
hidden in data and perform statistical hypothesis testing on large data
sets. The data science toolbox enables the computation-first
interpretation of cell images by allowing us to iteratively alternate
computational analysis with the generation of biological hypotheses
and visualization of the obtained results (Wait et al., 2020).

Data science has been successfully applied to cell imaging data
in multiple contexts. One prominent recent theme is the development
of deep-learning inference techniques, for example inference of
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high-resolution images from low-resolution images or inference of cell
structure directly from images (Belthangady and Royer, 2019;
Eisenstein, 2020). In general, machine-learning algorithms fit
generic mathematical models to data. In contrast to traditional
machine learning, where models are learned from data features
manually engineered by experts, deep learning enables analysis
without relying on predetermined features. Instead, a hierarchy of
image features is generated directly from the data, simultaneously with
the model learning process. This is achieved by using ground truth
annotations to train a model to map an input image to a predicted
annotation, for example, mapping every pixel in a fluorescence image
to its corresponding foreground or background annotation. During
training, the model is automatically optimized for a given task by
gradually adjusting its internal parameters according to the errors it
makes, in a process called back-propagation. Deep learning has already
revolutionized machine-learning-driven fields and, in microscopy, has
mostly been used to improve the robustness and performance of
standard bioimage-analysis tasks, such as segmentation, tracking and
classification (Moen et al., 2019; Ouyang et al., 2019a; Ronneberger
et al., 2015; Van Valen et al., 2016). It has also provided solutions to
other, less-routine, computational tasks. For example, image
restoration algorithms attempt to enhance image quality by inferring
high-quality images from low-quality data (Weigert et al., 2018) using
a variety of strategies, such as by taking advantage of structural
redundancy in an image to reconstruct high-quality super-resolution
images from under-sampled localization microscopy data (Ouyang
et al., 2018), or by performing point spread function engineering for
single-molecule localization (Nehme et al., 2020). Other applications
include the inference of intracellular organelle localization from label-
free images and the mapping of different cell microscopy modalities
onto one another (Christiansen et al., 2018; Ounkomol et al., 2018),
with potential applications including high-content screening (Cheng
et al., 2021) and the prediction of the functional cell state, such as
stages of the cell cycle or disease progression (Buggenthin et al., 2017;
Eulenberg et al., 2017; Yang et al., 2020; Zaritsky et al., 2020
preprint).
A second theme of data science in cell imaging is high-content

cell profiling, where the distributions of image-derived single-cell
measurements, such as length, area and fluorescence brightness, are
used to define fingerprints of cell populations under different
experimental conditions (Perlman et al., 2004). By distilling often
large image datasets into succinct fingerprints, cell profiling renders
datasets accessible to biological interpretation by users. For
example, CellProfiler, a popular software tool for high-content
image analysis, encourages a ‘measure everything, ask questions
later’ approach to image analysis (Caicedo et al., 2017; Carpenter
et al., 2006; Chandrasekaran et al., 2020) by enabling users to first

quickly extract and visualize a wide variety of quantitative measures
before deciding which are biologically important. These image-
based cell profiling ideas are now beginning to be applied to more-
complex model systems, including the screening of 3D patient-
derived organoids (Beck et al., 2021 preprint; Betge et al., 2019
preprint; Serra et al., 2019).

There are many other examples of the application of data science to
cell imaging that are specific to particular biological subdomains.
These include, for example, quantitative representations of cell shape
in 2D (Bagonis et al., 2019; Chan et al., 2020 preprint; Keren et al.,
2008; Pincus andTheriot, 2007) and in 3D (Driscoll et al., 2019; Elliott
et al., 2015), perturbation-free inference of information flow in
signaling pathways via ‘computational multiplexing’-based fluctuation
analysis (Lee et al., 2015; Machacek et al., 2009), statistical-based
methods for classification and characterization of protein localization
patterns and intracellular organization (Boland et al., 1998; Boland and
Murphy, 2001; Glory and Murphy, 2007; Ouyang et al., 2019b; Peng
and Murphy, 2011), atlases for intracellular organization and their
analyses (Cai et al., 2018; Heinrich et al., 2020 preprint; Thul et al.,
2017; Viana et al., 2020 preprint), time-series analyses of
heterogeneous dynamic molecular events (Aguet et al., 2013; Bhave
et al., 2020; Goglia et al., 2020; Jacques et al., 2020 preprint; Wang
et al., 2018, 2020), tracking of lineage, tissue structure and dynamics in
development, morphogenesis and collective cell migration (Amat
et al., 2014; Etournay et al., 2016; Hartmann et al., 2020; Keller, 2013;
Zaritsky et al., 2017), graph representations of dynamic cellular
processes (Gut et al., 2015), integration of single-cell omics
and imaging data (Villoutreix, 2021; Yang et al., 2021), and
machine learning for automated microscopy (Royer et al., 2016;
Waithe et al., 2020).

The emerging use of data science tools is revolutionizing many
fields, including the social sciences and business, and its impact in cell
biology will likely grow. Even just a few years ago, advanced
programming skills were needed to implement data science pipelines.
Recently, however, user interfaces and other tools have been
developed (Bannon et al., 2021; Fazeli et al., 2020; Ouyang et al.,
2019a; Stringer et al., 2021; Von Chamier et al., 2020 preprint),
rendering data science in cell imaging more accessible to a wide range
of researchers.

Hierarchies of data processing in microscopy
The robust and versatile construction of computational pipelines for
cell imaging is built on two software design concepts – modularity
and abstraction. Modularity and abstraction are what make image
analysis pipelines broadly useful and were arguably the key
conceptual software advances that fueled the development of
modern-day computing.

Observe Hypothesize

A

Quantify Hypothesize

B

Fig. 1. Image analysis workflows. (A) In a typical
microscopy-heavy research project, scientists
acquire and observe images, and then form and
quantitatively test hypotheses based on their
observations. (B) We propose that in the future it will
be necessary to flip this procedure; first acquiring
and quantifying images and only then interacting
with the data to further form and test hypotheses.
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Building a modular pipeline requires decomposing the main
image-analysis task into discrete subtasks that are as independent and
generalizable as possible. For example, analysis of nuclei movement
in an embryo could be decomposed into a nuclei detection problem,
followed by generic object tracking, and then track analysis. The
power of modularity stems from the ability to construct complex
image analysis pipelines from smaller components that can be
designed independently, yet function together. This promotes the
reuse of successful modules in many pipelines.
Abstraction is a process that enables modular design by

promoting both module reuse and simplicity, hiding algorithmic
details within modules, and exposing the inner working of modules
to other modules only when necessary. Abstraction enables users
and tool developers to focus only on the details that are immediately
relevant instead of conceptualizing the algorithm in its full
complexity. For example, there exist countless proprietary
microscopy file formats, each differently encoding the image and
its corresponding metadata. The software Bio-Formats (Linkert
et al., 2010), which is executed every time a user reads or writes
image data in the image processing program Fiji, provides the
abstraction that allows users to access image data without having to
be aware of the exact encoding of the different file formats.
Modularity and abstraction are concepts that go hand-in-hand to

enable effective problem solving with abstraction enabling
modularity. For example, Fiji promotes the construction of modular
image analysis pipelines via plugins. Plugins are the modular
components composing these pipelines, each solving a well-defined
problem and providing an abstract input–output interface. Such
implementation enables straightforward reuse of the same plugin in
different pipelines, switching between different components with the
same interfaces, and expansion of existing pipelines.
The modules that compose image analysis pipelines can be

crudely partitioned into two categories, low-level (signal driven)
and high-level (biology driven) (see Fig. 2). Low-level tasks are the
signal-driven processing steps that take images or image-derived
data and transform them into other images or sequences of numbers.
Low-level tasks include image preprocessing (e.g. deconvolution,
stage drift correction and tiling fields of view), detection and/or

segmentation (e.g. identifying cells/intracellular organelles within
an image), and tracking. It is the low-level tasks that enable the
automated and complete processing of large image datasets
(Danuser, 2011). Importantly, devising effective solutions for
low-level tasks requires deep algorithmic knowledge, and
sometimes deep understanding of the imaging and optical
settings. Domain knowledge can be very helpful. For example,
knowledge of the bending properties of microtubules could allow
preliminarily detected microtubules that have an unrealistic bend to
be excluded from further analysis. However, in most cases, deep
knowledge of the biological system or question is not necessary to
solve low-level tasks.

High-level tasks are biology driven, transforming large or
otherwise difficult to interpret sets of data, which are generally
the outputs of low-level tasks, into information that can be directly
understood to draw biological conclusions. High-level tasks include
data visualization and exploration, model fitting, and statistical
inference and comparisons. In contrast to most low-level tasks,
high-level tasks always require deep knowledge of the particular
biological domain. In order to formulate testable hypotheses, one
must understand the biological process at hand and be aware of the
experimental and computational techniques available to extract
information hidden within the image data. Admittedly, it is currently
difficult to point to specific major breakthrough discoveries in cell
biology achieved by applying data science to cell imaging.
However, both low- and high-level tasks carry the potential to
transform the field. Biological discovery is driven by enabling
technologies – data science applied to low-level tasks will open the
door to addressing existing questions that were previously
inaccessible due to a lack of suitable powerful methods. High-
level application of data science may unlock completely new fields
driven by new types of questions and new ways to discern cell
imaging data.

Moving beyond tool building
Data science tools have already been extensively adapted for a
variety of low level tasks, such as image enhancement (Weigert
et al., 2018), segmentation (Caicedo et al., 2019; Isensee et al.,

 

Registration

Segmentation Statistical 
analysis

deconvolution
Template 

Matching

Filtering

Visualization

Inference

Categorization

  Low level / signal driven

  High level / biology driven

Outputs not
interpretable

Outputs
interpretable

A

Tip track 
analysis

Cell
segmentation

Image 
registration

Microtubule 
tip detection

Tip filtering Tip tracking

Visualization and
interpretation

B

Tracking

 Cell tracking
Cell track 
analysis

Fig. 2. Hierarchy of image analysis tasks. (A) Image analysis pipelines can be decomposed into low-level (blue) and high-level (green) tasks, with low-level
tasks generally preceding high-level tasks. (B) An example image-analysis pipeline for microtubule tracking with low-level tasks shown blue and high-level
tasks shown green. Here, images are first registered, or aligned across frames, to account for microscopemovement. Next, the cell is segmented, or distinguished
from the background, and the microtubule tips are detected. The cell segmentation is used to filter tips by location, removing spurious detections outside the
cell, and the cell segmentation and tip detections are separately tracked across frames. Finally, using information derived from a cell-tracking analysis,
the tip tracks are analyzed to generate biological insight. In this example, only the track analyses are high-level tasks, since they are the only tasks whose
outputs can be directly interpreted to gain biological insight.
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2020; Stringer et al., 2021; Van Valen et al., 2016) and tracking
(Ulman et al., 2017). Indeed, most efforts in the thriving bioimage
informatics community have been invested in these types of
automation and tool building projects (Meijering et al., 2016). Low-
level tool building is essential for advancing almost all cell-
imaging-based research, but is not sufficient to answer biological
questions. For example, even if all the cells in a developing
zebrafish embryo are segmented and tracked, this alone does not
provide biological insight. Rather, the tracks must be further
visualized and analyzed with the underlying biology in mind.
Why has the bioimage analysis community so far focused on low-

level analysis tasks at the expense of the high-level tasks that yield
exciting biological discoveries?We believe that this focus stems from
two main causes. First, low-level tasks are the most common
problems encountered by anymicroscopist and thus draw community
attention as obvious important questions worth tackling.
Furthermore, they are the initial steps in any quantification. This
may seem trivial; however, developing algorithms for high-level
tasks is complicated by the need to first deploy an array of low-level
tasks, whereas developing low-level algorithms simply requires the
raw data.
Second, low-level tasks are simpler for researchers outside the field

of biology to tackle, and are particularly well-suited to computer
scientists. Low-level tasks are often readily formulated as abstract
computational problems and developing algorithms for them does not
typically require any specific ‘domain’ knowledge. In addition, a
major motivation for researchers from applied computational
sciences, such as computer vision, is algorithmic elegance and
efficiency. Publishing and career advancement in computer science is
driven by novelty in algorithm design, performance, robustness and,
for some applications, usability. Utility to other fields, such as
biology, is not emphasized. Moreover, the gold standard for
evaluating most low-level applications is comparison with human
annotation; however, there is often no correspondingly simple way of
evaluating high-level algorithms whose utility is understood only in
the context of a particular biological domain. Accordingly,
application of data science techniques in cell imaging is heavily
biased toward low-level tasks.

Building robust image analysis pipelines requires shared
infrastructure
No one research lab can be expert at the full spectrum of low- and
high-level tasks needed to draw robust biological conclusions from
imaging data. In fact, few labs currently have the expertise and
resources to take a computation-first approach to cell imaging data.
To utilize the full power of modern microscopy, we must
democratize access to computational analysis tools, data and
training.
Although well-designed algorithms that employ modularity and

abstraction enable the reuse of tools across labs, good software
design alone is not enough. Moving beyond low-level tasks requires
shared infrastructure to enable the joint development of algorithms
and the open use of data. Such infrastructure promotes the exchange
of open-source software and image-analysis toolboxes that enable
an effective quantification of low-level tasks and allows developers
to focus on one component of interest without the need to build a
full analysis pipeline to support it. Image-analysis software, such as
Fiji (Schindelin et al., 2012), CellProfiler (Carpenter et al., 2006),
Icy (de Chaumont et al., 2012) and Ilastik (Berg et al., 2019), as well
as open-software libraries (e.g. scikit-learn; Pedregosa et al., 2011),
have so far played this role, with deep-learning-specific platforms,
such as ImJoy and ZeroCostDL4Mic, beginning to be released

(Haase et al., 2020; Ouyang et al., 2019a; Von Chamier et al., 2020
preprint). Support for these platforms was recently consolidated to a
single online forum (https://forum.image.sc/), which is very active
with frequent use by many visitors. The Bioimage Informatics
Index (BII, https://biii.eu/) is a search engine that organizes the
wealth of available resources by linking bioimage analysis problems
to relevant tools to solve them. Another key infrastructure effort is
providing open access to published data to enhance reproducibility,
enable computational tool development and allow new discoveries
to be made from ‘old’ data (Zaritsky, 2018). To this end, image
repositories have recently received significant attention, with the
planned BioImage Archive as a major example (Ellenberg et al.,
2018;Williams et al., 2017). Image repositories will enable analyses
of unprecedented scales of data and are critical to attracting
computational researchers to the field.

Software engineers are needed to implement and maintain large-
scale tools and data repositories, but these positions are expensive
and currently rarely supported by governments or other funding
agencies. Philanthropy efforts, such as the Chan–Zuckerberg
Initiative and the Allen Institute of Cell Science, have identified
this gap and now provide external support, or hire software
engineers internally to produce open software. These efforts will
hopefully inspire more traditional funding mechanisms to support
professional engineers in building solid and shared infrastructure.

Training the next generation of data scientists in cell biology
Cell biology is inherently technology-driven and uses many
different tools from biochemistry, molecular biology, microscopy
and genomics. The tools of data science are in many ways no
different. Effective researchers need to be able to selectively deploy
technologies from other fields to forward their research, and it is
becoming increasingly clear that the ability to extract quantitative
information from microscopy data is essential. A modern cell
biologist should be able to decompose an image analysis problem
into subtasks, use existing computational tools to solve each subtask
and then analyze the pipeline output. This requires basic familiarity
with common image-analysis procedures for cell imaging, an ability
to piece together modules using simple programming and,
importantly, basic knowledge of statistics and machine learning to
interpret the results of the pipeline and its limitations.

How do we train the next generation of biologists to adapt to the
reality of bioimaging as a data-intensive field? With the
encouragement of funding agencies, academic institutes are
beginning to adjust their training programs for the ‘Big Data’ era
(Barone et al., 2017; Ekmekci et al., 2016; Rubinstein and Chor,
2014; Waldrop et al., 2015). Data analysis or programming
bootcamps and high-intensity basic training that last several days or
weeks emerged as one of the most popular means to train
inexperienced undergraduate or graduate students. However, the
effectiveness of these bootcamps is questionable (Feldon et al.,
2017), especially when the skills acquired during these short-format
interventions are not subsequently practiced and applied. Other
initiatives have focused on computational thinking, introducing the
basic computer science principles of abstract, algorithmic and logical
thinking to life scientists (Rubinstein and Chor, 2014), and/or full
courses in developing programming skills (Ekmekci et al., 2016).

We argue that this is not enough. Experimental methods are
taught, both directly in laboratory courses and indirectly through the
reading of journal articles, with the background knowledge needed
to understand these methods spread out among various courses.
Similarly, data science and other quantitative methods can be
integrated into curriculums. New, comprehensive cross-disciplinary
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training programs must be established to bridge the technical and
cultural gaps between the disciplines. Similar to how chemistry is
perceived as essential to the biology curriculum, statistics and other
data science tools should also be considered a part of the modern
biologist’s basic training (Markowetz, 2017). These skills should be
acquired early and be used continuously throughout undergraduate
and graduate school, not solely in computationally focused courses
(Hoffman et al., 2016). For example, when learning about
microscopy, students can analyze images with Fiji and integrate
results with simple python scripting. The importance of early
training and continuity was supported by a recent survey (Attwood
et al., 2019).
Whereas hands-on teaching of laboratory methods can require

significant space and equipment, hands-on teaching of data science
techniques requires only a laptop. A lack of qualified teachers can,
however, be a significant challenge (Williams et al., 2019). Faculty
without formal knowledge and hands-on experience in data science
are asked to design and teach relevant courses. Further
compounding this problem is the lack of suitable training
materials and reference textbooks specifically suited for these
purposes. This situation is even worse in the domain of cell imaging.
Most of the textbooks and courses for quantitative thinking and/or
programming aimed at biologists are focused on applications in
classic ‘bioinformatics’ (omics) (Attwood et al., 2019; Cvijovic
et al., 2016; Madamanchi et al., 2018; Rubinstein and Chor, 2014).
Images require a different focus because of the diversity in image
acquisition techniques and experiments (Gonzalez-Beltran et al.,
2020), as well as their multidimensional spatial and temporal
structure.
An exciting way to solve the teacher shortage is joint

interdisciplinary graduate-level training that brings together
students from experimental and computational sciences and
introduces both biological problems and quantitative approaches
to tackle them (Saunders et al., 2018; von Arnim and Missra, 2017).
Another potential solution is recruiting faculty from a neighboring
computational department to jointly develop with biomedical
faculty, a discipline-specific data science curriculum (Marshall
and Geier, 2020). Resources to facilitate cross-disciplinary teaching
have also begun to sprout. Steve Royle’s recent book, The Digital
Cell: Cell Biology as a Data Science (Royle, 2019), is a guidebook
for cell and molecular biologists on data science in cell biology,
with a special focus on cell imaging. The Network of European
BioImage Analysts (NEUBIAS) provides on-site and remote
training in bioimage analysis for biologists. Two members of
NEUBIAS, Kota Miura and Nataša Sladoje, recently published a
‘Bioimage Data Analysis Workflow’ (Miura and Sladoje, 2020),
which teaches how to combine multiple image processing
components to construct an effective automated image analysis
pipeline suited to a specific purpose and image dataset.
We have so far focused on training biologists to do image

analysis, but could we instead turn data scientists into biologists?
One possibleway forward is to engage computational students in the
development of low-level tasks with the motivation of
outperforming alternative algorithms and making tools usable for
biologists. This route does not require deep domain knowledge and
is premised on the hope that some students will develop a
fascination with biology. Another parallel strategy is to design
cross-disciplinary courses that include both biologists and data
scientists. In the domain of data science for cell imaging, the
curriculum could include a mix of topics, from low-level bioimage
analysis to high-level inference. Similar to a course that one of us,
Assaf, designed (Table S1), such a class could introduce data

scientists to the amazingly complex world of cell imaging and
eventually bring highly desired skills to cell biology.

What’s next?
We anticipate that data science applied to cell imaging will propel
cell biology forwards through these four themes.

Characterizing heterogeneity
Understanding a biological system requires considering the
variability of its components rather than just population averages
that mask heterogeneous phenotypes, especially since important
phenotypes may be rare.

Bridging scales
Cell biological processes cross scales in space and time –molecules
organize within cells, and cells organize within tissues to function.
Although we have extensively studied cell biology at some specific
scales, we still do not understand how information propagates
between scales to enable biological function.

Integrating data across modalities
On the one hand, single-cell omics technologies provide rich
information of many well-defined per-cell measurements that is
missing in microscopy-based approaches. On the other hand,
microscopy can provide information at the protein level, as well as
the spatial and temporal context that is mostly lacking in omics.
Integrating these two forms of complementary information has vast
potential to transform the field (Villoutreix, 2021).

Interpretable machine learning
Machine learning and deep learning, in particular, are very effective
at identifying hidden patterns in complex cell imaging data, but lack
the ability to explain which biologically relevant properties are
important. Developing interpretable data science approaches are
absolutely necessary for mechanistic understanding.

Modern biology is becoming more and more complex, advancing
toward studies with ever more physiologically relevant systems.
This trend of technology-driven complexity is only expected to
grow, and we, as a community, must learn to embrace and celebrate
it in order to move biology forwards. The combination of more
complex data with increased data volume demands infrastructure
advancements. Sensitive, robust and usable tools that enable
automated analysis are key to processing vast amounts of data and
reproducibly analyzing complex data sets. We must train students in
data science techniques that enable them to make sense of this data.
Together, we can enter the era of data science in cell imaging!
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