

Fig. S1. Strategy for tagging tropomyosin with mNeongreen: (A) Schematic illustration showing the insertion of P_{cdc8} mNG-40 amino acid linker-cdc8 cassette at leu1 locus. (B) Schematic illustration showing the insertion of P_{cdc8} mNG-40 amino acid linker-cdc8 cassette at the ura4 locus. The tag was expressed under the native cdc8 promoter. (C) Schematic illustration showing the insertion of $P_{Tpm1/2}$ mNG-40 amino acid linker-Tpm1/2 cassette at the leu2 locus. (D) Schematic illustration showing the expression of mNG-40 aa linker-TPM2 under the control of a CMV promoter in an RPE-1 cell.

Fig. S2. Tagging Cdc8 with mNeonGreen in *S. pombe***.** (A) Growth of strains was assessed by manual spot test. Untagged wild-type strains act as a control for mNG-Cdc8 strains. Cells were cultured in YEA media at 24°C to saturation, subjected to six-fold serial dilution, and spotted onto YEA agar. Plates were incubated at 24°C and 36°C for 3 days before being photographed. (B) Fimbrin null mutant cells (*fim1*Δ) cells show obvious mNG-Cdc8 patches. (n=34). (C) Airyscan2 images of mating cells expressing GFP-Cdc8 (left) or mNG-Cdc8 (centre; right) which labels the fusion focus. mNG-Cdc8 allows detection of actin cables not visible with GFP-Cdc8 (n=4). Higher cytosolic GFP signals were detected in the GFP-cdc8 cells. Scale bars are 5μm.

Supplemental figure 3 18' 0' 2 6' 8' 10' 12' 14' 16' 14' 8' 0' 2 4' 6' 10' 12' 16' 18' ii

Fig. S3. Actomyosin ring assembly visualized using mNG-Cdc8 in elongated cdc25-22 cells. Panel i and ii are time-lapse images of two S. pombe cdc25-22 cells expressing mNG-Cdc8 demonstrating medial assembly of Cdc8 cables as well as flow of non-medial cables containing Cdc8-tropomyosin into the CAR. (n=65). Scale bars are $5\mu m$.

Fig. S4. Tagging Cdc8 with mNG in *S. japonicus***.** (A) Growth of strains was assessed by manual spot test. Untagged wild-type strains act as a control for mNG-Cdc8 expressing strains. Cells were cultured in YEA media at 24°C to saturation, subjected to five-fold serial dilution, and spotted onto YEA agar. Plates were incubated at 24°C and 36°C for 3 days before being photographed. (B) Time-lapse images of an *S. japonicus cdc25*-D9 cell expressing mNG-Cdc8 demonstrating medial assembly of Cdc8 cables as well as flow of non-medial cables containing Cdc8-tropomyosin into the CAR (n=12). Scale bar is 5μm.

Fig. S5. Tagging Tpm1 and Tpm2 with mNG in S. *cerevisiae* **cells.** (A) Growth of strains was assessed by manual spot test. Untagged wild-type strains act as a control for mNG-tagged Tpm1 and Tpm2 strains. Cells were cultured in YPD media at 24°C to saturation, subjected to five-fold serial dilution, and spotted onto YPD agar. Plates were incubated at 23°C and 37°C for 3 days before being photographed. (B) Fimbrin null mutant cells (*sac6*Δ cells) show obvious mNG-Tpm1 (n=209) and mNG-Tpm2 (114) patches. Scale bar is 5μm.

Fig. S6. Cdc8 specific Nanobody-mNeonGreen in S. pombe. (A) Yeast two hybrid interaction shown between Sp Cdc8 and 7 camelid nanobodies. (B) Growth of strains was assessed by manual spot test. Untagged wild-type strains act as a control for Nb5-mNG strains. Cells were cultured in YEA media at 24°C to saturation, subjected to six-fold serial dilution, and spotted onto YEA agar. Plates were incubated at 24°C and 36°C for 3 days before being photographed. (C) Alphafold 2 prediction of Cdc8-tropomyosin–Nb5 contacting surface sites and their electrostatic potential.

Table S1. Yeast strains used in this work

	Strain number	Genotype	
S. pombe	MBY101	ade6-210 ura4-D18 leu1-32 h-	
	MBY102	ade6-210 ura4-D18 leu1-32 h+	
	MBY192	<i>ura4</i> -D18 <i>leu1-</i> 32 h-	
	MBY12825	leu1-32 pDUAL:p ^{cdc8} :mNeongreen-40aa:cdc8 ura4-D18 ade6-210, cdc8+ h-	
	MBY12828	leu1-32 pDUAL:p ^{cdc8} :mNeongreen-40aa:cdc8 ura4-D18 ade6-210, cdc8+ h+	
	MBY12947	leu1-32 pDUAL-p ^{cdc8} :mNeongreen-40aa:cdc8 lys1< <plys1u-p<sup>act1:lifeact-mCherry:ura4+ ade6-210, cdc8+</plys1u-p<sup>	
	MBY12994	fim1∆ leu1-32 pDUAL:p ^{cdc8} :mNeongreen-40aa:cdc8, ura4-D18, ade6-210, cdc8+	
	MBY13071	cdc25-22 leu1-32 pDUAL:p ^{cdc8} :mNeongreen-40aa:cdc8 rlc1-mCherry:ura4+ ade6-210 h+	
	MBY13185	<i>leu1-</i> 32 <i>p</i> ^{adh11} :Nanobody5-mNeonGreen	
	YSM3935	h90 <i>myo52</i> -tdTomato: <i>natMX leu1</i> -32:p ^{cdc8} :mNeonGreen- cdc8:term ^{cdc8} :term ^{ADH1} : <i>leu1</i> + lys3+:p ^{map3} :mCherry:term ^{ADH1} : <i>bsdMX ade6</i> -M216 <i>ura4</i> - D18	
	YSM3936	h90 <i>myo52</i> -tdTomato: <i>natMX leu1</i> -32:p ^{ADH1} : <i>cdc8Nb5</i> -mNeonGreen:term ^{ADH1} : <i>leu1</i> + <i>ade6</i> -M210 <i>ura4</i> -294	
	YSM3316	h90 <i>myo52</i> -tdTomato: <i>natMX leu1</i> -32:p ^{ADH1} : <i>cdc8Nb5</i> -mNeonGreen:term ^{ADH1} : <i>leu1</i> + <i>ade6</i> -M210 <i>ura4</i> -294	
S. japonicus	SOJ5	matsj-P2028 h-	
	SOJ4909	pcdc8-mNeonGreen-40 a.a. linker-cdc8 ^{ORF} - cdc8 ^{3'UTR} ::ura4+::ura4sj-D3 h+	
	SOJ5001	pcdc8-mNeonGreen-40 a.a. linker-cdc8 ^{ORF} - cdc8 ^{3'UTR} ::ura4+::ura4sj-D3 cdc25-D9:kanR:ura4+	
	SOJ5221	pcdc8-mNeonGreen-40 a.a. linker-cdc8 ^{ORF} - cdc8 ^{3'UTR} ::ura4+::ura4sj-D3 h-	
S. cerevisiae	YSP002	ESM356 MATa $ura3$ -52 $leu2\Delta1 trp1\Delta63 his3\Delta200$ (wild type)	
	YSP107	As YSP002 except pRS305-P _{tpm1} -mNG-40aaL-tpm1- T _{tpm1} -leu2	
	YSP108	As YSP002 except pRS305-P _{tpm2} -mNG-40aaL-tpm2- T _{tpm2} -leu2	
	YSP191	As YSP002 except pRS305-P _{tpm1} -mNG-40aaL-tpm1- T _{tpm1} -leu2 \(\Delta\)sac6::His3MX6 abp1-tdtomato::natNT2	
	YSP192	As YSP002 except pRS305-P _{tpm2} -mNG-40aaL-tpm2- T _{tpm2} -leu2 ∆sac6::His3MX6 abp1-tdtomato::natNT2	

Table S2. Plasmids used in this study

Plasmid name	Description	Reference	
pTH8-77	pDUAL-cdc8(5'UTR)-mNG-40 a.a. linker-cdc8-cdc8(3'UTR)	This Study	
pMB117	pDUAL-Padh11-Nb A5-40 a.a. linker-mNG	This Study	
pSO1233	pBluescriptSK(+)-ura4+(S. japonicus)-cdc8(5'UTR)-mNG-40 a.a. linker-cdc8-cdc8(3'UTR)	This Study	
piSP347	pRS305-Ptpm1-mNG-40aaL-tpm1-Ttpm1	This Study	
piSP349	pRS305-Ptpm2-mNG-40aaL-tpm2-Ttpm2	This Study	
piSP23	pFA6a-His3MX6	Knop et al 1999	
pMB128	pDUAL-Padh11-mNeongreen-40aaL	MB lab	
piSP112	pMM5s	This Study	
piSP113	pMM6s	This Study	
piSP600	pMM5S-Cdc8	This Study	
piSP604	pMM6S-Cdc8	This Study	
piSP198	pMM5S-Cdc8 Nb A5	This Study	
piSP200	pMM5S-Cdc8 Nb A10	This Study	
piSP202	pMM5S-Cdc8 Nb A19	This Study	
piSP203	pMM5S-Cdc8 Nb A22	This Study	
piSP204	pMM5S-Cdc8 Nb A37	This Study	
piSP206	pMM5S-Cdc8 Nb A83	This Study	
piSP207	pMM5S-Cdc8 Nb A94	This Study	
piSP209	pMM6S-Cdc8 Nb A5	This Study	
piSP211	pMM6S-Cdc8 Nb A10	This Study	
piSP213	pMM6S-Cdc8 Nb A19	This Study	
piSP215	pMM6S-Cdc8 Nb A22	This Study	
piSP217	pMM6S-Cdc8 Nb A37	This Study	
piSP218	pMM6S-Cdc8 Nb A83	This Study	
piSP219	pMM6S-Cdc8 Nb A94	This Study	

Movie 1. S. pombe mNG-Cdc8 patch and cable dynamics.

Movie 2. mNG-Cdc8 dynamics during CAR assembly in S. pombe

Movie 3. mNG-Cdc8 dynamics during CAR assembly in highly elongated *S. pombe cdc25*- 22 cells, demonstrating flow of Cdc8 cables into the CAR during its assembly.

Movie 4. mNG-Cdc8 dynamics during CAR assembly in highly elongated *S. pombe* cdc25- 22 cells, demonstrating flow of Cdc8 cables into the CAR during its assembly.

Movie 5. mNG-Cdc8 dynamics and cable expulsion during CAR constriction in S. pombe.

Movie 6. Dynamics of mNG-Cdc8 during ATP-dependent constriction of CARs within *S. pombe* cell ghosts.

Movie 7. Dynamics of *S. pombe* mNG-Cdc8 during mating and sporulation.

Movie 8. Dynamics of S. japonicus mNG-Cdc8 during CAR assembly and constriction.

Movie 9. Dynamics of *S. japonicus* mNG-Cdc8 during CAR assembly and constriction in elongated *cdc25*-D9 cells.

Movie 10. Dynamics of S. cerevisiae mNG-Tpm1 in cables.

Movie 11. Dynamics of S. cerevisiae mNG-Tpm1 in the CAR.

Movie 12. Dynamics of S. cerevisiae mNG-Tpm2 in cables.

Movie 13. Dynamics of S. cerevisiae mNG-Tpm2 in the CAR.

Movie 14. Simulation of Cdc8-Nanobody 5 interaction with Cdc8 dimer.

Movie 15. Dynamics of mNG-Nb5 during CAR assembly in S. pombe.