

Fig. S1. Heat and salt stress induce the formation of Lsp1 foci in the plasma membrane. A Confocal fluorescence microscopy images (tangential sections) of *LSP1-GFP* expressing yeast cells grown exponentially for 4 hours at 28°C and subsequently shifted to 37°C for 2 hours or grown at 28°C in the presence of 1 M NaCl for 6 hours. Scale bar: 5 μ m. **B-D** Quantification of the density of local Lsp1-GFP accumulations (patches)(B), mean patch intensity relative to the wild-type control (C) and patch length (D) in cells treated as in (A). Data are presented as mean ± SD from 4 biological replicates (circles – wild type, triangles – *pil1*Δ; 100–150 cells in each condition). **E** Confocal fluorescence microscopy images (transversal sections) of *pil1*Δ yeast cells expressing *LSP1-GFP* from either its native or *tetO7* promoter grown exponentially for 4 hours at 28°C and subsequently shifted to 37°C for 2 hours or grown at 28°C in the presence of 1 M NaCl for 6 hours. Scale bar: 5 μ m. **F-G** Quantification of the number of local Lsp1-GFP accumulations (patches) per cell cross-section (F) and mean cell intensity relative to the wild-type control (G) in cells treated as in (E). Data are presented as mean ± SD from a single experiment (circles – wild type, triangles – *pil1*Δ; 100–150 cells in each condition). *tetO7-LSP1* indicates overexpression of *LSP1.* * – *P* ≤ 0.1, *** – *P* ≤ 0.001, two-way ANOVA.

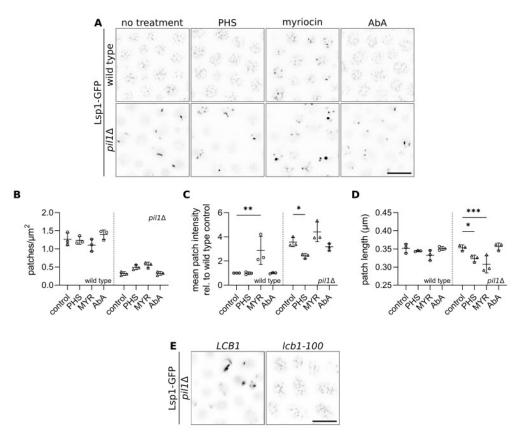


Fig. S2. Decrease in the activity of serine-palmitoyl transferase induces the formation of Lsp1 eisosomes in the plasma membrane; tangential sections.

A Confocal fluorescence microscopy images of *LSP1-GFP* expressing yeast cells (BY4742 background) grown exponentially for 4 hours at 28°C and treated with indicated chemicals for 2 hours. **B-D** Quantification of the density of local Lsp1-GFP accumulations (patches) (B), mean patch intensity relative to the wild-type control (C) and patch length (D) in cells treated as in (A). Data are presented as mean ± SD from 4 biological replicates (circles– wild type, triangles – pil1 Δ ; 150–200 cells in each condition). * – P ≤ 0.1, ** – P ≤ 0.01, *** – P ≤ 0.001, two-way ANOVA. E Confocal fluorescence microscopy images of LSP1-GFP expressing yeast cells (RH1800 background) grown exponentially for 5 hours at 25°C. PHS – phytosphingosine, 10 μ M; MYR – myriocin, 10 μ M; AbA –aureobasidin A, 1 μ g/ml. Scale bars: 5 μ m.

Fig. S3. Hog1 kinase is not required for Lsp1 eisosome formation in response to hyperosmotic stress A Confocal fluorescence microscopy images (transversal sections) of *LSP1-GFP* expressing *hog1* Δ yeast cells grown exponentially for 6 hours at 28°C and treated with nothing or 1 M sorbitol for 25 minutes. Scale bar: 5 µm. B Quantification of the number of local Lsp1-GFP accumulations (patches) per cell cross-section in cells treated as in (E). Data are presented as mean ± SD from 3 biological replicates (circles – *hog1* Δ , triangles – *hog1* Δ *pil1* Δ ; 170–230 cells in each condition). *** – *P* ≤ 0.001, two-way ANOVA.

Table S1	. Yeast strains	used in the study.
----------	-----------------	--------------------


Strain	Genotype	Source
BY4742, wild type	MATα his3 Δ 1 leu2 Δ 0 lys2 Δ 0 ura3 Δ 0	Euroscarf
hog1∆	BY4742; hog1::kanMX4	Euroscarf
nce102∆	BY4742; nce102::kanMX4	Euroscarf
pil1∆	BY4742; pil1::kanMX4	Euroscarf
pil1∆a	BY4741; pil1::kanMX4	Euroscarf
seg1∆	BY4742; seg1::kanMX4	Euroscarf
nce102∆ pil1∆	BY4742 except MET15; pil1Δ nce102Δ	This study
seg1∆ pil1∆	BY4742 except MET15; seg1Δ pil1Δ	Vaskovicova et al., 2015
lsp1∆ pil1∆	BY4742; lsp1Δ pil1Δ	This study
seg1∆ nce102∆	BY4742 except LYS2 met15Δ0; seg1 Δ nce102 Δ	This study
seg1 Δ nce102 Δ pil1 Δ	BY4742 except MET15; seg1Δ nce102Δ seg1Δ	This study
Y114	<i>pil1Δ nce102Δ; LSP1::GFP::LEU2</i> (YIp128)	This study
Y172	BY4742; LSP1::GFP::LEU2 (YIp128)	Zahumensky et al., 2022
Y257	<i>pil1Δ</i> ; <i>LSP1::GFP::LEU2</i> (YIp128)	This study
Y430	seg1Δ pil1Δ; LSP1::GFP::LEU2 (YIp128)	This study
Y1199	BY4742; LSP1::GFP::HIS3 (pKT128)	This study
Y1214	Y1199; LSP1::GFP::G418 (pCM225)	This study
Y1219	Y1214; pil1::pFA6a-natMX6	This study
Y1313	<i>lsp1Δ pil1Δ</i> ; <i>SEG1::GFP::LEU2</i> (YIp128)	This study
Y1315	nce102Δ; LSP1::GFP::LEU2 (YIp128)	This study
Y1377	seg14; LSP1::GFP::LEU2 (YIp128)	This study
Y1393	seg1Δ nce102Δ pil1Δ; LSP1::GFP::LEU2 (YIp128)	This study
Y1395	seg1Δ nce102Δ; LSP1::GFP::LEU2 (YIp128)	This study
Y1417	<i>hog1Δ</i> ; <i>LSP1::GFP::LEU2</i> (YIp128)	This study
Y1421	Y1417; pil1::pFA6a-natMX6	This study
RH1800, wild type	MATα leu2 Δ 0 trp1 Δ 0 ura3 Δ 0 lys2 Δ 0 bar1-1	H. Riezman
lcb1-100	RH1800; <i>lcb1-100</i>	H. Riezman
Y1233	RH1800; LSP1::GFP::LEU2 (YIp128)	This study
Y1234	Icb1-100; LSP1::GFP::LEU2 (YIp128)	This study
Y1238	Y1233; pil1::pFA6a-natMX6	This study
Y1239	Y1234; pil1::pFA6a-natMX6	This study

final strain	MATa strain	MATα strain
lsp1∆pil1∆	pil1∆ LSP1::mRFP::LEU2	lsp1∆ PIL1::GFP::URA3
seg1∆pil1∆	pil1∆ SEG1::GFP::LEU2	seg1Δ PIL1::mRFP::URA3
nce102∆pil1∆	pil1Δ NCE102::mRFP::URA3	nce102∆ PIL1::GFP::LEU2
seg1∆nce102∆	nce102∆ SEG1::GFP::URA3	seg1Δ NCE102::mRFP::LEU2
seg1∆nce102∆pil1∆	pil1∆nce102∆ SEG1::GFP::LEU2	pil1∆seg1∆ NCE102::mRFP::URA3

All listed strains were constructed in the course of this study; for details see Methods

Table S3. Differentially expressed genes in the $seg1\Delta nce102\Delta pil1\Delta$ mutant relative to the wild type. Yeast were cultured and processed as described in Methods. As significance thresholds, log 2 fold change (LFC) was set to 1, P-adjusted < 0.05.

Click here to download Table S3

Movie 1. Disintegration of eisosome remnants and formation of Lsp1 eisosomes following myriocin-induced inhibition of SPT

LSP1-GFP expressing yeast cells were grown exponentially for 4 hours at 28°C and treated with 10 μ M myriocin at time t = 0 min. Z-stacks were recorded for 2 hours in 5 min increments. The obtained images were drift corrected and maximum intensity projections calculated in proprietary Zeiss ZEN software. Timestamp shows time following myriocin addition in HH:MM format. Scale bar: 5 μ m.