The Journal of Experimental Biology 201, 981-995 (1998)
Printed in Great Britain © The Company of Biologists Limited 1998
JEB1331

981

ESTIMATING VELOCITIES AND ACCELERATIONS OF ANIMAL LOCOMOTION: A
SIMULATION EXPERIMENT COMPARING NUMERICAL DIFFERENTIATION
ALGORITHMS

JEFFREY A. WALKER*
Department of Zoology, Field Museum, Roosevelt Road at Lake Shore Drive, Chicago, IL 60605, USA
*e-mail: walker@fmppr.fmnh.org

Accepted 14 January; published on WWW 5 March 1998

Summary

Functional biologists employ numerical differentiation
for many purposes, including (1) estimation of maximum
velocities and accelerations as measures of behavioral
performance, (2) estimation of velocity and acceleration
histories for biomechanical modeling, and (3) estimation of
curvature, either of a structure during movement or of the
path of movement itself. | used a computer simulation
experiment to explore the efficacy of ten numerical
differentiation algorithms to reconstruct velocities and
accelerations accurately from displacement data. These
algorithms include the quadratic moving regression (MR),
two variants of an automated Butterworth filter (BF1-2),
four variants of a method based on the signal’'s power
spectrum (PSA1-4), an approximation to the Wiener filter
due to Kosarev and Pantos (KPF), and both a generalized
cross-validatory (GCV) and predicted mean square error
(MSE) quintic spline. The displacement data simulated the
highly aperiodic escape responses of a rainbow trout
Oncorhynchus mykissand a Northern pike Esox lucius
(published previously). | simulated the effects of video

(Vmax) and acceleration Amax) and the per cent root mean
square error over the middle 80 % of the velocity VrmsE)
and acceleration Armsg) profiles.

The results present a much more optimistic role for
numerical differentiation than suggested previously.
Overall, the two quintic spline algorithms performed best,
although the rank order of the methods varied with video
speed and magnification. The MSE quintic spline was
extremely stable across the entire parameter space and can
be generally recommended. When the MSE spline was
outperformed by another algorithm, both the difference
between the estimates and the errors from true values were
very small. At high video speeds and low video
magnification, the GCV quintic spline proved unstable.
KPF and PSA2-4 performed well only at high video speeds.
MR and BF1-2 methods, popular in animal locomotion
studies, performed well when estimating velocities but
poorly when estimating accelerations. Finally, the high
variance of the estimates for some methods should be
considered when choosing an algorithm.

speed (60, 125, 250, 500 Hz) and magnification (0.25, 0.5, 1

and 2 screen widths per body length) on algorithmic
performance. Four performance measures were compared:
the per cent error of the estimated maximum velocity

Key words: locomotion, velocity, acceleration, performance,
biomechanics, movement analysis, fast start, Fourier analysis, spline
analysis, filters, simulated data.

Introduction

Functional biology has played an increasingly important roleliscrete amount of time, are critical for investigating
in elucidating and understanding ecological differences amorigjomechanical models of animal movements that occur during
organisms (Webb, 1982, 1984; Denny, 1988; Norberg, 199@¢eeding and locomotion. Robust biomechanical models of

Niklas, 1992; Wainwright and Reilly, 1994; Vogel, 1994).

animal motion can lead to predictions of performance and,

Many ecologically relevant functional analyses require theiltimately, ecological variation.

estimation of first and second derivatives using numerical Numerical differentiation necessarily suffers from the

differentiation. For example, some measures of functionahagnification of small errors introduced during the digitizing

performance (e.g. maximum velocity, acceleration and turningrocess. Smoothing and filtering are two distinct, but related,
curvature) for behaviors important to fithess (e.g. feedinglasses of methods for estimating and removing this error.

strikes, escape responses, maneuvering) are estimated usiiiggse two classes

reflect different ‘ways of seeing’

first and second derivatives of a discretely sampled functioomeasurement error. In smoothing, the estimated error is
Additionally, accurate estimates of the entire history ofremoved by fitting a function that follows the central trend of
velocity, acceleration and turning curvature, over somehe data and replacing the observed values with the expected
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or ‘smoothed’ values. This method is probably most intuitiveunequally spaced points. For each raw trace, | used a linear
to biologists who are familiar with errors around trend lines irregression between each pair of adjacent points as an
many other biological problems. In filtering, the trend, orinterpolator and divided the measured function into 8001
signal, is modeled as a high-amplitude, low-frequencyequally spaced points. At a sampling rate of 60 Hz, 5-6 points
component of the data, and the error, or noise, is removed ould be sampled from the reference data, which is below the
filtering out the low-amplitude, high-frequency componentsminimum number of points for some of the algorithms. |
from the signal. Filtering is probably most intuitive to therefore added enough points with zero acceleration to the
engineers who are familiar with noisy signals in many differenbeginning of the reference sequences to allow an additional
systems. two points when sampled at 60 Hz. Because the same reference
Numerous smoothing and filtering algorithms are availablesequences were used for all simulations, this addition increased
but few objective reasons have been offered to choose oftee number of points sampled at 125, 250 and 500Hz by 4, 8
algorithm over another. This lack of guidance is unfortunat@nd 16, respectively. The total numbers of poiNtst, in the
because, while most of these algorithms produce similar firseference profiles for Figs 3—7 of Harper and Blake (1990)
and second derivatives for data with trivial levels of digitizingwere 10199, 10024, 10527, 10199 and 10077, respectively.
error, they produce widely divergent derivative estimates fof he reference figures are illustrated in Fig. 1. | generated the
large and more realistic levels of error. Many biologistdfive reference displacement profiles by doubly integrating the
investigating (nonhuman) animal movement have shown littl@cceleration data using:
concern for the accuracy of the numerical differentiation
algorithms employed (but see Rayner and Aldridge, 1985 Vi:At(ai+2ai—1
Harper and Blake, 1989). By contrast, numerical
differentiation algorithms have been intensively developed ang,,4
evaluated in the human movement sciences (Hatze, 198"
Wood, 1982; Woltring, 1985, 1986D'Amico and Ferrigno, y = At (vi +vi_1) +Y g
1992; Corradiniet al. 1993; Gazzani, 1994; Giakas and : 2 -1
Baltzopoulos, 199). Unfortunately, the performance of ) _ o
numerical differentiators in the human movement sciences h41€reAtis the time between points in the reference sequence,
been limited to data sampled at relatively low frequencied IS the reference acceleratianjs the reference velocity and
(50-100Hz). Because accuracy in numerical differentiatiodi 1S the reference displacement at tim&he initial velocity
varies with sampling frequency (Harper and Blake, 1989)2nd acceleration were set to zero.

animal biologists using high-speed video should exercise FOUr different levels (60, 125, 250 and S00Hz) of video
caution when extrapolating results from human movemeritP€€d ¥S were simulated by sampling eved point of the

+Vi1 1

@

studies. Nref reference points where:
In this study, a computer simulation experiment is used t Nref —1
compare the performance of ten numerical differentiatior K=—sxT ©)

algorithms and to explore the effects of video magnificatior
and video speed on algorithmic performance. AlgorithmicThe period,T, of each reference response was estimated from
performances were evaluated by comparing estimateigs 3—7 of Harper and Blake (1990). | simulated the random
velocities and accelerations with reference values from affect of starting the camera anywhere within the half-interval
function known a priori. | focused on two aspects of 1/(2V9 by initiating sampling at a random time,within the
algorithmic performance: (1) the accuracy of an algorithm’'sange Gr<1/(2V9S. | simulated the effect of digitizing pixels,
reconstruction of velocities and accelerations throughout th&hich have discrete values, rather than actual displacements,
duration of a movement (which may be arbitrarily defined) andvith continuous values, by transforming the sampled distances
(2) the accuracy of estimated maximum velocities andnto pixels:
accelerations.

RxVM ) @

yj = round (yi H BL
Materials and methods

Generation of simulated data where BL is the body length of the fislHR is horizontal

To create reference velocity and acceleration histories wittesolution andvVM (video magnification) is the number of

known values, | digitized the acceleration profiles illustrated irscreen widths contained in one fish body length. | used the fork
Figs 3—7 of Harper and Blake (1990). These data were fromength of each individual (Harper and Blake, 1990)Bbrand
two escape responses of a rainbow t@otorhynchus mykiss a typical horizontal resolution of a high-speed video camera
and three escape responses of a Northerngske luciusand (480 lines) foHR. Measurement error is a function of both the
were originally measured with an accelerometer surgicallynagnitude and frequency of incorrectly digitizing the correct
implanted into the body of the individual (Harper and Blakepixel and the amount of magnification (level ¥M). |
1990). The figures were digitized with between 93 and 132imulated measurement error by varyMigl and holding the
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magnitude and frequency of incorrectly digitized pixels
constant. Four different levels M were simulated: 0.2§
0.5, 1x and %, wherex represents screen widths per body
length (hence, 0.5 of the body length would be visible within
the screen width at4. | added a one pixel error i3 points,
where N is the number of sampled points in the simulated
sequence. In a test of digitizing error using a clearly defined
marker on a moving fish, five-sixths of the trials had the same
pixel value while one-sixth differed by one pixel; hence, my
simulated error is large, by comparison. The sign of the added
error was random. Finally, error was constrained to occur at
the points in which the fish was moving (i.e. no error was added
to points sampled from the initial sequence of zero
displacement).

The level of error, or roughness of the data, can be compared
with other data sets using:

[ = G x100 )
(Corradini et al. 1993). Corradiniet al. (1993) noted that
‘Lanshammar (1982 considered a value of 0.87 to be realistic
whereas Hatze (1981) judged data with [r] equal to 7.28 to be
severely contaminated by noise’. The mean valuesafVM

of 2x, 1x, 0.5x and 0.2% were 0.57, 1.14, 2.25 and 4.4,
respectively.

To generate a sample of estimates within ed"bixVS
combination, | sampled the reference sequence 100 times, each
time starting the sampling from a random time and adding one
pixel error of random sign to one-third of the sampled values.
With each simulated sequence, | estimated instantaneous
velocities and accelerations using the methods described below
and converted these estimates back into the original units
(ms?) using the inverse of equation 4.

Four performance statistics were compared among the
algorithms. Vrmse is the per cent root mean square error
(RMSE) of the velocity estimates, taken with respect to the
true velocitiesy, for the middle 80% of the sampled times
within the sequence:

round(0.9N)

_ i = round(0.1N) (VI _Vi) 6
VRMSE - round(0.9N) x 100 - ( )

Z (i)

i = round(0.1N)

The first and last 10% of the data points were excluded from
the computation of RMSE to avoid the large edge effects that
occur with some of the algorithmgmax is the per cent error

of the estimated maximum velocity:

Fig. 1. Profiles of the five acceleration histories that were

simulated for this study. The original data, from Harper and Blake max(\7i)—max(vi)
(1990), were measured using an accelerometer. Simulated data Vinax = x

v 100 - @

sets were sampled from these profiles at four different sampling
frequencies, or video speed¥q, and four levels of video Armse, the per cent root mean square error of the acceleration

magnification YM).

estimates, andAmax, the per cent error of the estimated
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maximum acceleration, were calculated by substituting1990) developed a semi-automatic method to firicom the
accelerations for velocities in equations 6-7. regression of root mean square error (RMSE), measured across
a range of cut-off frequencies, against these cut-off
Numerical differentiation algorithms compared (Table 1) frequencies. In this residual analysis (RA), the RMSE is the
Moving regression (MR) error from the unfiltered function, not the true function, which

Given a vector o sampled positionsy, measured ever Is “”k’?"W”- A problem ~with ir_npleme_ntﬁng this as a
ped b A y eneralized ‘black-box’ procedure is that it is unclear which

At seconds, derivatives are commonly estimated by backwaro%, ies 10 include in the I .
forwards or first central differences: requencies 1o include In the inear regression.

Instead of using Winter’'s (1990) approach, | employed an
1 autocorrelation analysis of the residuals and used two
dt ~ E(yi —¥-0) ®) different criteria for finding the optimal cut-off frequency.
For each potential cut-off frequency between 0 ands0.5
1 (where fs is the sampling frequency), taken at 0.1Hz
at = AtV ) intervals, | computed the autocorrelation function of he
residuals. The sum of the squared autocorrelations (SSRA) at
each lag, normalized by the autocorrelation at lag zero, was
used as a measure of the residual autocorrelation. The first
dy 1 optimalfc was chosen as the value resulting in the minimum
at = ot = Yi) + (i)l (100  SSRA (Cappeli@t al. 1996).

For the second estimate of the optimfiall compared the
respectively. While these simple estimates using lineapbserved SSRA at each potenfiawith the upper ninetieth
regression are extremely sensitive to measurement errgrercentile of SSRAs computed fromN random normal
polynomial regressions through five or more points arevariates. Any set of residuals with an observed SSRA below
potentially more robust (Lanshammar, 1882 anczos (1956) this ninetieth percentile is considered not significantly different
described a simple solution to smooth noisy data and estimdt®m a random time series. The optinfialvas chosen as the
first and second derivatives based on a five-point piecewidewest value that resulted in a ‘random’ SSRA. | refer to the
guadratic polynomial regression. In the method of Lanczosinimization method as BF1 and the comparison with a
(1956), derivatives are not computed by differentiating aandom time series method as BF2.
guadratic function but, instead, are estimated directly by taking For both variants of the optimal Butterworth filter, | first
a weighted average of the two (first derivative) or four (seconextrapolated the data using a quadratic polynomial. At each tail
derivative) smoothed values immediately prior to andof the series, | used a quadratic polynomial through seven (if
following the point of interest. | implemented the MR N=10) or five (ifN<10) points and adddd/2 points at equal
algorithm directly from Lanczos (1956) with no modification. intervals using the quadratic coefficients. This point
Prior to the numerical differentiation, | used the fourth-ordeextrapolation has been shown to improve the efficacy of a
central differences to smooth the raw data (Lanczos, 1956).filtered function and its derivatives (D’Amico and Ferrigno,

1990; Smith, 1989). Smith (1989) found that a linear
Automated bidirectional second-order Butterworth digital  extrapolation method was the best of several alternatives (but
filter (BF) not including a quadratic polynomial method). In my
| used the bidirectional second-order Butterworth filterexploration of several extrapolation algorithms, | found a
described in Winter (1990), but employed a fully automatedjuadratic polynomial extrapolation performed better than a
method for choosing the optimal cut-off frequenfgyWinter  linear extrapolation.

and

Table 1.Summary information on the ten algorithms compared in this study

MR Five-point quadratic moving regression (Lanczos, 1956)

BF1 Butterworth filter using minimized autocorrelation optimization (Winter, 1990; Capgiedlo1996)

BF2 Butterworth filter using random residual optimization (Winter, 1990; this study)

PSAl Power spectrum analysis using SF=1 (D’Amico and Ferrigno, 1990, 1992)

PSA2 Power spectrum analysis using SF=2 (D’Amico and Ferrigno, 1990, 1992)

PSA3 Power spectrum analysis using Butterworth filter (D’Amico and Ferrigno, 1990, 1992; this study)
PSA4 Power spectrum analysis using quintic spline filter (D’Amico and Ferrigno, 1990, 1992; this study)
KPF Kosarev—Pantos approximation of the Wiener filter (Gazzani, 1994)

GCV Generalized cross-validatory quintic spline (Woltring, 1985, 4p86

MSE Predicted mean square error quintic spline (Woltring, 1985,a]1986

SF is the sharpening factor.
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Power spectrum analysis (PSA) Quintic splines have a half-ordan=3. The degree of
D'Amico and Ferrigno (1990) developed a method ofsmoothness is controlled by the parameer In the
finding the optimafc from the power spectrum density of the Simulation, I used two methods to estimate an optimal value
observed data. D’Amico and Ferrigno (1992) referred to thi®f p on the basis of statistical considerations of the data only:
method as the linear-phase autoregressive model-bas€l thep value that gives a mean square error (MSE) closest
derivative assessment algorithm (LAMBDA). They discussed® an error variance knowa priori and (2) a generalized
a parameter, the sharpening factor (SF), that increases @i©Ss-validation (GCV) criterion (Craven and Wahba, 1979;
decreases the length of the filter window used in the filter. AVoltring, 1985, 1986). The GCV and MSE alternatives
decrease in SF makes the filtered derivatives more peaked.W¢re referred to by Woltring (198pas mode 2 and mode 3
their initial description of LAMBDA, D’Amico and Ferrigno Fespectively. | used:
(1990) suggested setting SF equal to 2, but later suggested a error=2[0.5(1 h) + h]2 (13)
value of 1 if only the peak acceleration is desired (D’Amico , i
and Ferrigno, 1992). | used both values, referring to these &S the error variance for MSE, whéres 1/3, the frequency
PSAL and PSA2. | extrapolated the data using the quadraﬁ’é incorrectly Iogatmg the true pixel (sge aboye). The value O_.5
polynomial method described above instead of the lined€fects the maximum expected error in locating an actual point
prediction method suggested by D'Amico and Ferrignd®s & resglt of d|g|t|zmg a pixel (|..e. the true point |I.eS. within
(1990) as | found that the former resulted in more stablﬁahc a pixel of the digitized point). The value within the
values at the tails. Even with this extrapolation, the errors rackets IS a rou_gh gstlmate of the expected.error de_waqon n
the tails could be large. To attempt to reduce the effects &Jther thex or y direction. The expected error in any d!rept|on
error at the tails, | used the optinfatletermined by the PSA Is the square root of tW|ce.the s_quqred vallue within the
but filtered the data using either the bidirectional seconobraCketS; hence, the error variance is simply twice the squared

) L . alue.
order Butterworth filter (PSA3) or the quintic spline (PSA4).V . . .
For the spline, | converted the cut-off frequentgyinto its All algorithms were written in either Pascal or Fortran77 (LS

approximate spline smoothing parameter equivalent using t ortran Plug-in_for Metr_owerks_ Code Warrl_or, Fortner_
equation: esearch Inc.) and compiled using CodeWarrior Academic

Gold 11 (Metrowerks Inc.) for the Power Macintosh. All of
p=exp2min(2rfc) - In(dt)], (11)  these methods are available in a single software program,
QuickSAND (Quick  Smoothing and Numerical

magnitude of the smoothing parameter (see above). Th |ffe(r)esnt|3\t/|0|rll) forlégi Power Macintosh and clones running
equation is a simple rearrangement of the terms for computingaC (Walker, )

the Butterworth equivalent cut-off frequency given a value of Results
p (Woltring, 198®).

wherem is the spline order (here, equal to 3) anis the

Global performance
. The distributions oWrmsE, Vmax ArMSE and Amax for each
Kosarev—Pantos filter (KPF) algorithm, pooled across sampiéyl andVS are summarized
Gazzani  (1994) described the  Kosarev—Pantogising box plots (Fig. 2). In these plots, the median is a measure
approximation to the Wiener filter, which estimates the optimabf a method’s tendency, while the error variation (the variance
filter coefficients from the distribution of the Fourier- of the errors around zero and not around the distribution’s
transformed data. | implemented the KPF routine exactly asean or median) is a measure of a method’s robustness or
listed in the appendix of Gazzani (1994). In addition, | oddability to avoid large errors. Differences in the pooled
extended the data in order to create a pseudoperiodic tingistributions among algorithms were relatively small for the
series (Gazzani, 1994). velocity but large for the acceleration measures. \FisE,
the median estimates differed trivially but the distributions of
Generalized cross-validatory (GCV) and predicted mean ~ BF2, PSAL and KPF were positively skewed, indicating less
squared error (MSE) quintic spline robustness. In coqtrast, GCcv a_nd, especially, MS_E were _the
most robust algorithms for estimates of the entire velocity
history over the range &M andVSsimulated here. FOfmax
the MR, BF1, PSA4, GCV and MSE algorithms had generally
5 symmetrical distributions of small variance with slightly
' (12)  positive medians (<5%). The negatively skewed distributions
of BF2, PSA1-3 and KPF indicate a tendency to underestimate
wheret is time (or any other independent variablels the  Vmax Again, the two spline algorithms were the most robust.
raw, dependent datg,is the smoothed dependent data pnd  As for the velocity estimates, the pooled distributions suggest
is the regularizing, or smoothing, parameter (Woltring, 1985that MSE and, to a lesser degree, GCV had a better global
198@). The first 2n—2 derivatives of each local polynomial performance for acceleration estimates than did the other
of the spline are continuous at each valuetjobr knot.  algorithms. ForArmsg, the MSE distribution not only had the

A regularized spline of ordem?2is a piecewise polynomial
of degree &1 that minimizes the sum:

tn n
o[yl s Els)-yw
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distribution’s median. The lines (or 0
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tenth and ninetieth percentile¥rmse and 100
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error of the velocity and acceleration 50—
estimates, taken with respect to the true ]
velocities and accelerations, for the middle 0 - % —I— %

s — — —_0
. e _ I 1 [i ] ——
80% of the sampled times within the T I__I__I =
sequence.Vmax and Amax are per cent _50: BN T
differences between the estimated and true 100
values of the maximum velocity and MR BFL BF2 PSAlL PSA2 PSA3 PSA4 KPF GCVMSE

acceleration for each sampled profile. .
pleap Algorithm

median with the smallest per cent error but also had the leastagnitude of both the median error and the error variance from
positive skew, indicating its robustness. In contrast, thé0 to 250Hz and the slight (higiM) to large (lowVM)
distribution of GCV had a relatively small median error but wasncrease in error from 250 to 500 Hz (especially conspicuous
highly positively skewed. Other methods that were prone tfor the acceleration data), (2) the decrease in error with
large errors were BF1, BF2, PSA1 and KPF. The distribution dhcreasingVM, especially at highVS and (3) the decrease in
Amaxindicates that all methods tend to underestimate maximuwariance among methods from 60 to 250Hz but the increase
accelerations. The three methods with the smallest median gfeom 250 to 500 Hz, a pattern that was particularly conspicuous
cent error, BF1, PSA1 and GCV, were associated with highlgt lowVM. There were exceptions to 1: throughout the increase
positively skewed distributions. In contrast, the PSA2, PSA3n VS both the maximum and RMSE performances of MSE
PSA4 and, especially, MSE algorithms had moderate tand KPF improved, the RMSE performances of PSA1-4
relatively large median errors but were far less likely to result ilmproved and the acceleration performances of GCV
grossly incorrect estimates of maximum acceleration. worsened.
For Vruse (Fig. 3), the two spline methods were clearly

Local performance: effects of video magnification and speedsyperior at 60Hz. At 125Hz, the MR, BF2 and, especially,

The global error distributions (Fig. 2) fail to highlight the PSA1 and KPF algorithms performed the worst at the highest
complex interactions between algorithidiM and VS on VM, but differences among methods became increasingly trivial
algorithmic performance (Figs 3—-6). The major features of thas VM decreased. In contrast, for both 250 and 500Hz,
distributions of the performance measures within &8dRVS  differences among algorithms were trivial at the highidébut
combination (Figs 3-6) are (1) the marked decrease in thegere increasingly large 48Vl decreased. At 500 Hz and 0X25
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Fig. 3. Box plot representations of the distributions of the per cent erroldrigge pooled across the five profiles and 100 resampled
displacements for each combinatiolvdfixVS. Vruske is the per cent root mean square error of the velocity estimates, taken with respect to the
true velocities, for the middle 80% of the sampled times within the sequencex(&jagnification, (B) % magnification, (C) 0.5
magnification and (D) 0.26magnificationVM is video magnificationySis video speed. Conventions as in Fig. 2.

magnification, the MR, BF1 and GCV algorithms performedmedian errors and the smallest error variances, especially at
the worst. The general patterns occurring in the distributions dfigh VM. The KPF method performed poorly at IM8but the
Vruse also occurred in the distributions \dhax(Fig. 4). At 60  best at highvS particularly at highvVM.

and 125Hz, the two spline algorithms had both the smallest For both Armse (Fig. 5) andAmax (Fig. 6), the two spline
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magnificationVSis video speed. Conventions as in Fig. 2.

algorithms were clearly superior at 60 Hz, especially at higlperformance at lowM for both Armse and Amax. The low

VM. While MSE continued to have the best performance witlsharpening factor of PSA1l resulted in a highly unstable
increasingVs for Armse the KPF algorithm had the best performance for both acceleration measures at 60 and 125 Hz
performance foAmaxat highVS PSA1-4 had relatively good but good performance, relative to the other PSA variants, for
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displacements for each combinationVxVS. Armske is the per cent root mean square error of the acceleration estimates, taken with respect
to the true accelerations, for the middle 80 % of the sampled times within the sequencem@grZfication, (B) ¥ magnification, (C) 0.5
magnification and (D) 0.28magnification VM is video magnificationySis video speed. Conventions as in Fig. 2.

estimates oAmax (but notArmsg) at 250 and 500Hz. The MR high VM andVS and at high/M and moderat¥'S but poorly
method performed relatively well for estimates of bothat either lowVSor at highVSand lowVM. For Armsg, BF1
maximum acceleration and the entire acceleration profile ggerformed better than BF2 at 60 and 125Hz but worse at 250
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Fig. 6. Box plot representations of the distributions of the per cent error8nfgrpooled across the five profiles and 100 resampled
displacements for each combination \W¥IxVS. Amax is the percent difference between the estimated and true value of the maximum
acceleration for each sampled profile. (A)r@agnification, (B) ¥ magnification, (C) 0.5 magnification and (D) 0.26magnificationVM is

video magnificationySis video speed. Conventions as in Fig. 2.

and 500 Hz. FoAmax, BF1 performed better than BF2 at 60, Discussion

125 and 250Hz. The better of BF1 and BF2 performed well, Computer simulation experiments have proved to be a
relative to the other algorithms, at 250 Hz but very poorly apowerful means of evaluating alternative numerical methods
lower and higher video speeds. over a specified parameter space (RehHil. 1990; Oden and
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a fully automatic methodology with no input of either
subjective or objective external knowledge (the MSE
algorithm differs from the others by employing an estimate of
the measurement error). The wisdom of this approach is
debatable, but these results do show that good estimates can
occur in complete ignorance of either the processes generating
the signal or the mechanics of the algorithms. (4) Woltring
(1991) suggested that the optimal smoothing parameter may
differ for derivatives of different order and that more
20 smoothing may be necessary for higher-order derivatives (see
l also Hatze, 1981; Giakas and Baltzopoulos, bR97The

/ \ smoothness of the derivatives investigated in the present study
0 were determined by the measured function only (zeroth-order

derivative). (5) Finally, this study explicitly simulated data
0 0.1 0.2 0.3 0.4 derived from video which, in general, has far lower resolution
Time (s) than high-speed film. Film-derived data should therefore have

Fig. 7. Simulated acceleration profile used to test for the effect cfmaller expected errors than video-derived data at comparable
oversmoothing due to low sampling frequency on the tendency of diming magnification and speed.
algorithm to underestimate maximum accelerations.
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Comparative performance

The simulations reported here suggest that no method

Sokal, 1992; Martins and Garland, 1991). The comparison gierforms best across all regions of tMBIXVS parameter
numerical differentiation algorithms has a relatively longspace. This conclusion is not surprising and supports the
history but has generally been Ilimited to qualitativefindings of analyses that simulated data sampled at lower
comparisons of only a few model sequences (Zermitka. frequencies than those reported here (Corraeliral. 1993;
1976; Pezzackt al.1977; McLaughliret al. 1977; Wood and Giakas and Baltzopoulos, 1997 Because of the variation in
Jennings, 1979; Cappozzo and Gazzani, 1983). Two recerank-order performance with changed/i andVS the global
simulation studies that have compared the performance @krformance statistics should be treated cautiously. Despite the
several numerical differentiation algorithms (Corradihial.  caution about using a universal differentiator, the MSE quintic
1993; Giakas and Baltzopoulos, 189are of limited use to spline algorithm was highly stable over the entire parameter
anyone using high-speed video because of the low (50-100 Hgpace simulated here and can be generally recommended.
sampling frequency. Additionally, while Giakas andWhen outperformed by another algorithm, both the difference
Baltzopoulos (1993) compared the performance for a largebetween the estimates and the error from the true value were
number of signals, they reported only the relative rankingsery small. A potential, but unexplored, problem with the MSE
among the algorithms and not the actual or per cent errors. Th&gorithm is its sensitivity to misestimates of the input error.
simulation in the present study, which compared the Corradini et al. (1993) compared the second-derivative
performance of ten algorithms across different combinations gferformance of five different numerical differentiators
video magnification and speed, was designed to lend sonmecluding a heptic spline version of MSE (the four other
guidance to the choice of numerical differentiation algorithmalgorithms in their study were not investigated here). Five
for biologists investigating animal movement. simulated functions sampled between 50 and 100 Hz were used

Before discussing the results, | want to emphasize severfdr the analysis. Supporting the results reported here, Corradini
caveats of this analysis. (1) The simulated behavior was highbt al. (1993) showed that the MSE algorithm performed better
aperiodic and non-stationary, which may bias the results ithan the other four functions for estimates of the entire
favor of methods that do not assume a periodic or stationagcceleration profile.
signal (Woltring, 1985). Nevertheless, the relatively good The GCV performed very well over much of the parameter
performance of the PSA and KPF algorithms at hig® space. ForAmax in particular, at least 50% of the GCV
suggests that detrending and, if necessary, odd-extension asimates had relatively small errors at nearly all combinations
adequate for these data. Additionally, a comprehensivef VM and VS At high VS however, the GCV algorithm
simulation of periodic signals should be undertaken to evaluagroved unstable, often resulting in severely overestimated
the performance of the spline methods with periodic data. (3)elocity and acceleration estimates. This suggests that, in
The optimal VS for an algorithm should not be consideredgeneral, if the GCV acceleration profile does not look
absolute. Instead, the important comparative parameter shouttarkedly noisy, the resulting estimates should be reasonable.
be some measure of the frequency of the signal’s inflectiolt is somewhat surprising that GCV performed as well as it did
points, for the derivative order of interest, relative to samplingt 60 and 125Hz. Woltring (1985, 1986explicitly warned
frequency. (3) With the exception of the MSE algorithm, | haveagainst using the GCV criterion on data sets with fewer than
intentionally treated the process of numerical differentiation ad0 points; in the present study, the ranges of sample sizes of
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the data at 60 and 125Hz were 7-8 and 15-16 pointsagnification have an expected error of approximately 40 %.
respectively. Such high errors certainly preclude reasonable reconstruction
Giakas and Baltzopoulos (19)7recently compared GCV of locomotor dynamics or comparisons of acceleration
with five other algorithms including PSA3 and Winter’'s (1990)performance. Harper and Blake (1989) recognized two sources
residual analysis (RA) method of estimating the optimabf errors: sampling frequency error (SFE) and measurement
Butterworth filter (similar in spirit to BF1 and BF2). Giakas error (ME). While the presence of these errors is inherent in
and Baltzopoulos (199J evaluated the performance of the numerical differentiation, their influence on derivative
algorithms on data from 24 simulated signals sampled at 50 Hsstimates can be minimized by the selection of an appropriate
with 30 different levels of added noise. Each signal wasumerical differentiator. Harper and Blake (1989), following
sampled only once for a level of added noise. Giakas ard/ebb (1977, 1978), used Lanczos’ moving regression (MR)
Baltzopoulos (1998) reported global rankings only (i.e. algorithm to estimate accelerations (Lanczos, 1956). The
pooled over noise level) for estimates of the whole profile angattern of the error distributions for the MR algorithm observed
found PSA3 to have better performance than both GCV anid this study (Figs 3—6), that is, an initial decrease and final
RA for both velocity and acceleration estimates. Actual erroincrease in per cent error, with increasiMy closely
levels were not reported, except for a single signal (whichiesembles the expected pattern discussed by Harper and Blake
curiously, showed GCV performing better than PSA3 for(1989).
nearly all levels of added noise). A major advantage of the MR algorithm is that it is
The MR algorithm is a commonly used method forcomputationally trivial, while its chief disadvantage is that it
estimating accelerations in the animal locomotion literaturedoes not allow the user to control the degree of smoothing [see
especially for measures of fast-start performance (Webb, 197Zanshammar (1982 for a more flexible use of piecewise
1978; Domenici and Blake, 1991, 1993; Kasapial. 1993;  polynomials]. The second derivative of a quadratic polynomial
Law and Blake, 1996). While the MR algorithm performedis constant and, if the function’s second derivative varies, the
well for estimating velocities for data sampled at or aboveomputed second derivative will be a weighted average of the
125Hz, it only performed well for estimates of acceleration atunction’s second derivatives at each of the points used to
250Hz. At lower sampling frequencies, the MR algorithmestimate it. As a consequence, estimates of the maximum
severely underestimated accelerations; at higher frequenciessécond derivative of a function sampledthout noisewill
severely overestimated accelerations. always be too low. Harper and Blake (1989) refer to this source
To stabilize edge effects at the beginning and end of af error as sampling frequency error because, as the function
sequence, D’Amico and Ferrigno (1990, 1992) used forwargs sampled at smaller intervals, variation in the function’s
and backward linear prediction to extend the observedecond derivative at any five neighboring points becomes
sequence prior to filtering. While my implementation of theincreasingly smaller, and the polynomial's second derivative
linear prediction extension worked well for the well-known will approach that of the sampled function.
displacement data of Pezzaek al. (1977), unusually large Algorithms that allow different levels of smoothing are not
errors at the ends occurred for many of the simulated sequencescessarily prone to excessive underestimation of maximum
analyzed in the present study. My use of quadratic polynomiafelocities and accelerations due to low sampling frequency.
regression to extend the data resulted in edges with less erfeor each of the ten algorithms investigated in the present study,
than occurred with the linear prediction extension. In theit give the per cent errors (Table 2) for estimates of maximum
exploration of the PSA differentiator, D’Amico and Ferrigno acceleration of a function resembling that of Harper and Blake
(1990, 1992) varied the magnitude of the sharpening factqd989) and sampledithout errorat 60 Hz (Fig. 7). With the
(see Materials and methods) between 1 and 5 and concludexiception of the KPF algorithm, the MR algorithm was most
that a value of 1 was best if acceleration maxima are desiredfected by sampling frequency error. In contrast, GCV and
but a value of 2-3 tended to minimize the RMSE. D’AmicoMSE each had an error of 0.06% and were, essentially,
and Ferrigno’'s (1992) conclusion is supported for theunaffected by sampling frequency error, as defined by Harper
simulated fast-start data analyzed here; PSA1, with and Blake (1989). Nevertheless, as illustrated in Fig. 6, GCV
sharpening factor of 1, performed much better than the othand MSE were affected by sampling real data with noise at a
PSA algorithms forAmax. Indeed, PSAL1 was one of the bestlow sampling frequency. The underestimation of acceleration
methods forAmax at low VM and highVS PSA2-4 all in the GCV and MSE (and other) algorithms results from
performed similarly, except that PSA3-4 had smaller errors alampling at some time prior to and following peak
the edges than did PSA2 (this result is not apparent in thecceleration, but not at the peak itself, a problem that increases
RMSE figures since only the intermediate 80% of the pointwiith decreasing sampling frequency. While only some

were used for the calculation of RMSE). methods are affected by oversmoothing due to low sampling
_ _ frequency (Harper and Blake’s sampling frequency error), all
Lanczos’ moving regression (MR) method methods are affected by missing an event due to low sampling

The use of numerical differentiation to estimate maximunfrequency (note that, in the heuristic example of Fig. 7, the
acceleration was criticized by Harper and Blake (1989), whpeak was intentionally sampled to avoid this source of
showed that estimates using typical film speeds (250 Hz) argampling frequency error).
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Table 2 Estimates of maximum acceleration and their per bias of an algorithm. For example, the MSE algorithm
cent error for the function in Fig. 7 sampled at 60 Hz without consistently underestimates the actual maximum acceleration
added noise If enough were known about this bias, a correction factor could

be added to estimates Bfax One caveat to using such a

Algorithm Maximum acceleration Error (%) . . . .
correction factor is that not only does the magnitude of the bias

GCV 79.95 -0.06 vary with VM andVSbut it should also vary with the shape of

'\P"SSE4 77%%‘2 :g'gg the displacement profile (the effects of which were not

' X measured in this study).

PSA1 73.28 -8.4 . .

PSA2 70.66 1168 Perhaps more important for comparative performance

BF1 66.73 -16.59 analyses is an algorithm’s robustness, represented by the error

PSA3 66.54 -16.82 variance of the performance estimates. For example, the

BE2 51.57 -35.54 median per cent error fémaxby the GCV algorithm at 500 Hz

MR 49.1 -38.62 and X magnitude was only0.3 %, but more than 10% of the

KPF 29.32 -63.35 estimates were overestimated by over 100%. In contrast, the

MSE algorithm had a slightly higher median per cent error
The true maximum acceleration was 80.0th Because no noise (-9.5%) but a much smaller error variance. As a result,

was addgd to the samp!ed points, the error reflects underestimationé}{hough the MSE may underestimate the actual maximum
the maximum acceleration due to oversmoothing. acceleration, it should underestimate the maximum by a similar

See Table 1 for an explanation of the algorithms. magnitude for all individuals.

The results of the video data presented here suggest that

Harper and Blake (1989) argued that the measurement erreven the best numerical differentiation algorithms may result
component of the total error in estimating maximumin error variation large enough to preclude comparisons of
accelerationgncreaseswith increasing film speed because subtle performance variation. For example, the large errors
digitizing error, although constant in magnitude, increaseassociated with the MR and GCV algorithms at higmay
relative to the distance moved by the animal betweeexplain the failure to find significant differences in maximum
successive frames. As a result, the total error increases atceleration between closely related fish using film data and
speeds above the optimum (Harper and Blake, 1989). Thike MR algorithm (Law and Blake, 1996) or between samples
argument is contrary to the analysis of derivative errors bgubjected to different treatments using video data and the GCV
Lanshammar (1988), who suggested that errors will algorithm (Beddowet al. 1995). Because film data allows
continually decrease with increasiM® Harper and Blake’s much higher resolution than video, error variances should be
(1989) argument may explain the extreme overestimation ohinimized when using the KPF, PSA, GCV or MSE
Amaxfor the MR algorithm at 500 Hz when VM was0.5x. In  algorithms in combination with high-speed film.
addition to MR, the BF1, BF2 and GCV algorithms also While the RMSE associated with estimating velocity
markedly overestimated maximum accelerations at hig§h profiles was low, it was uncomfortably high for the
Importantly, however, some algorithms were resistant to thiacceleration profiles (the best performers had error rates of 11.1
source of error, at least at the video speeds and magnitudésat 500 Hz and»2and 27.0 % at 500 Hz and 0951t is well
analyzed in this study. PSA2, PSA4 and MSE nearly alwayknown that numerical differentiators are highly unstable at the
underestimated maximum accelerations, and the magnitude eflges of a sequence. Some of these methods attempted to
this underestimation decreased Wit PSA1, PSA3 and KPF control for this by artificially extending the sequence either
often overestimated maximum accelerations at high but not after (KPF) or before and after (BF, PSA) the original
low VSbut, again, the absolute error decreased with increasirggquence. Nevertheless, edge effects were apparent (the reason
VS at least up to 500 Hz. The results of the present study, themhy the measure of RMSE included only the intermediate
show that changes in error, with respectM§ are more 80% of the points). Clearly, there is no substitute for actual
complicated than suggested by either Harper and Blake (1988)easurements of displacement before and after the sequence

or Lanshammar (19&2. of interest. Additionally, if using the GCV spline, the added
points should increase the accuracy of the estimate of the
How to get better results optimal smoothing parameter.

The performance of the automated differentiating algorithms Given the large amount of data in this study, | did not
over the parameter space simulated in this study suggestexplore the causal explanation of the high RMSE; that is, if the
more optimistic role for numerical differentiation in studies ofgeneral pattern of peaks and troughs present in the true
comparative performance and locomotor dynamics thaacceleration profile was faithfully reconstructed despite the
concluded by Harper and Blake (1989). Two properties arkarge RMSE or if the entire shape of the profile was incorrectly
important when choosing a numerical differentiator: theestimated. This is an important distinction because completely
expected performance of an algorithm and the robustness wiisshapen estimates of acceleration profiles could lead to
the algorithm. The expected performance, represented in thigghly inaccurate dynamic models of animal movement. A
study by an algorithm’s median performance, measures theseful addition for future simulations would be to explore
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correlates of algorithmic performance. For example, do we acclimation in the marine fisMyoxocephalus scorpiusl. exp.
have more confidence in an estimate if all algorithms give Biol. 198 203-208.
similar values? Similarly, numerically estimated acceleratiofPAPPELLO, A., LA PALOMBARA, P. F.AND LEARDINI, A. (1996).
profiles of the center of mass during steady swimming in a fish Optimization and smoothing techniques in movement analpsis.
showed little variation within swimming speed, either among_J- Pio-med. Computi1, 137-151. _ _
sequences or among individuals (Walker and Westneat, 1997770720 A. AND Gazzani, F. (1983). Comparative evaluation of
L - . techniques for the harmonic analysis of human motion data.
Does the S|m|la_r|ty in these sequences mdlcate_ goqd eSt'mateSBiomech.la 267—776.
of the accel_eratlon profile or were aII'Qf the pr_oflles.|nc0rrectIyCORRAD|N|’ M. L., FoReTT, S.anp Leo, T. (1993). Numerical
estimated in the same way? Additional simulations could gifferentiation in movement analysis: how to standardise the
investigate whether we should have more confidence in our evaluation of techniquesled. Biol. Eng. Compu81, 187-197.
numerically differentiated results, given a similarity in profile Craven, P.anp WaHBa, G. (1979). Smoothing noisy data with spline
shapes. functions. Estimating the degree of smoothing by the method of
Finally, time-averaged performance measures have beengeneralized cross-validatioNumer. Math31, 377-403.
suggested as alternatives to instantaneous estimates in ordePMIco, M. AND FERRIGNG, G. (1990). Technique for the evaluation
avoid the potentially large errors resulting from numerical of derivatives from no_isy biomec_hanical displacemeqt data using a
differentiation Indeed, many studies of fast-start performance Model-based bandwidth-selection proceduléed. Biol. Eng.
report only the total distance travelled in some behavior or B,(A:;rlzgurl\is’;?éiibm G. (1992). Comparison between the
velocity based on this distance and the duration of the travel o ' '

i . i more recent techniques for smoothing and derivative assessment in
(Webb and Skadsen, 1980; Taylor and McPhail, 1986; Eaton ;o mechanicsMed. Biol. Eng. Compug0, 193-204.

et al. 1988; Jayne and Bennett, 1990; Norton, 1991; Swaimpeyny, M. W. (1988)Biology and the Mechanics of the Wave-Swept
1992; Watkins, 1996). While time-averaged measures of EnvironmentPrinceton: Princeton University Press.
performance do not suffer from exponentially magnified erroDomenici, P. ano Brake, R. W. (1991). The kinematics and
propagation, they do suffer from masking proximate performance of the escape response in the angeffistophyllum
explanations of performance variation. Many of the critical eimekej. J. exp. Biol.156, 187-205.

features of the acceleration profiles measured by Harper aR@MENICI, P.AND BLAKE, R. W. (1993). The effect of size on the
Blake (1990, 1991), including time to peak acceleration and kinematics and performance of angelfistiefophylium eimekgi
number of acceleration peaks, could not have been discoveredSCaPe responsesan. J. Zoal71, 2319-2326. .
using time-averaged performance measures. More important'I:yATON‘ R. C., DDoMENICO, R. AND Nissanov, J. (1988). Flexible

f tudi f fi f th iati .7 body dynamics of the goldfish C-start: implications for
or studies of comparative performance, the variation in reticulospinal command mechanismisNeurosci8, 2758—-2768.

acceleration profiles among individual fast starts (Harper and,,,,, F. (1994). Comparative assessment of some algorithms for
Blake, 1990, 1991) demonstrates the complex relationship giferentiating noisy biomechanical datat. J. bio-med. Comput

between the distance traveled during some arbitrary time and37, 57—76.

maximum acceleration. This complex relationship suggestSiakas, G. anp BaiTzopouLos V. (19974). A comparison of
that time-averaged measures of fast-start performance may notwtomatic filtering techniques applied to biomechanical walking
be a good indicator of acceleration performance. Inter- data.J. Biomech30, 847-850.

individual and intra-individual escape behaviors are highlySIAKAS, G.AND BALTzOPOULOS V. (199'h). Optimal digital filtering
variable and context-dependent (e.g. Huntingtrell. 1994). requires a different cut-off frequency strategy for the determination

. L . . of the higher derivativesl. Biomech30, 851-855.
It seems likely that both high initial accelerations (e.g. raplcf_| RPER D_gG.AND BLAKE, R. W. (1989). A criical analysis of the

jumps) and high average velo_(:ltles (eg. escap.es |_nto a refuge’i}se of high-speed film to determine maximum accelerations of fish.
can be closely related to survival, but the relative influence of ; exp. Biol 142, 465-471.

each may depend on the context of the response. Because Qfkeer D. G.anp BLake, R. W. (1990). Fast-start performance of
both the complexity of fast-start movements and the variation rainbow troutSalmo gairdneriand northern pik€sox lucius J.
in escape behavior, time-averaged measures cannot replacexp. Biol.150, 321-342.
instantaneous measures of escape performance. HARPER D. G.AND BLAKE, R. W. (1991). Prey capture and the fast-
start performance of northern piEsox luciusJ. exp. Biol.155
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