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Functional biologists employ numerical differentiation
for many purposes, including (1) estimation of maximum
velocities and accelerations as measures of behavioral
performance, (2) estimation of velocity and acceleration
histories for biomechanical modeling, and (3) estimation of
curvature, either of a structure during movement or of the
path of movement itself. I used a computer simulation
experiment to explore the efficacy of ten numerical
differentiation algorithms to reconstruct velocities and
accelerations accurately from displacement data. These
algorithms include the quadratic moving regression (MR),
two variants of an automated Butterworth filter (BF1–2),
four variants of a method based on the signal’s power
spectrum (PSA1–4), an approximation to the Wiener filter
due to Kosarev and Pantos (KPF), and both a generalized
cross-validatory (GCV) and predicted mean square error
(MSE) quintic spline. The displacement data simulated the
highly aperiodic escape responses of a rainbow trout
Oncorhynchus mykissand a Northern pike Esox lucius
(published previously). I simulated the effects of video
speed (60, 125, 250, 500 Hz) and magnification (0.25, 0.5, 1
and 2 screen widths per body length) on algorithmic
performance. Four performance measures were compared:
the per cent error of the estimated maximum velocity

(Vmax) and acceleration (Amax) and the per cent root mean
square error over the middle 80 % of the velocity (VRMSE)
and acceleration (ARMSE) profiles.

The results present a much more optimistic role for
numerical differentiation than suggested previously.
Overall, the two quintic spline algorithms performed best,
although the rank order of the methods varied with video
speed and magnification. The MSE quintic spline was
extremely stable across the entire parameter space and can
be generally recommended. When the MSE spline was
outperformed by another algorithm, both the difference
between the estimates and the errors from true values were
very small. At high video speeds and low video
magnification, the GCV quintic spline proved unstable.
KPF and PSA2–4 performed well only at high video speeds.
MR and BF1–2 methods, popular in animal locomotion
studies, performed well when estimating velocities but
poorly when estimating accelerations. Finally, the high
variance of the estimates for some methods should be
considered when choosing an algorithm.

Key words: locomotion, velocity, acceleration, performance
biomechanics, movement analysis, fast start, Fourier analysis, sp
analysis, filters, simulated data.
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Functional biology has played an increasingly important ro
in elucidating and understanding ecological differences amo
organisms (Webb, 1982, 1984; Denny, 1988; Norberg, 19
Niklas, 1992; Wainwright and Reilly, 1994; Vogel, 1994
Many ecologically relevant functional analyses require t
estimation of first and second derivatives using numeri
differentiation. For example, some measures of function
performance (e.g. maximum velocity, acceleration and turn
curvature) for behaviors important to fitness (e.g. feedi
strikes, escape responses, maneuvering) are estimated u
first and second derivatives of a discretely sampled functi
Additionally, accurate estimates of the entire history 
velocity, acceleration and turning curvature, over som
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discrete amount of time, are critical for investigatin
biomechanical models of animal movements that occur dur
feeding and locomotion. Robust biomechanical models 
animal motion can lead to predictions of performance an
ultimately, ecological variation.

Numerical differentiation necessarily suffers from th
magnification of small errors introduced during the digitizin
process. Smoothing and filtering are two distinct, but relate
classes of methods for estimating and removing this err
These two classes reflect different ‘ways of seein
measurement error. In smoothing, the estimated error
removed by fitting a function that follows the central trend 
the data and replacing the observed values with the expe
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or ‘smoothed’ values. This method is probably most intuiti
to biologists who are familiar with errors around trend lines
many other biological problems. In filtering, the trend, 
signal, is modeled as a high-amplitude, low-frequen
component of the data, and the error, or noise, is remove
filtering out the low-amplitude, high-frequency componen
from the signal. Filtering is probably most intuitive t
engineers who are familiar with noisy signals in many differe
systems.

Numerous smoothing and filtering algorithms are availab
but few objective reasons have been offered to choose 
algorithm over another. This lack of guidance is unfortun
because, while most of these algorithms produce similar 
and second derivatives for data with trivial levels of digitizin
error, they produce widely divergent derivative estimates 
large and more realistic levels of error. Many biologis
investigating (nonhuman) animal movement have shown li
concern for the accuracy of the numerical differentiati
algorithms employed (but see Rayner and Aldridge, 19
Harper and Blake, 1989). By contrast, numeric
differentiation algorithms have been intensively developed a
evaluated in the human movement sciences (Hatze, 1
Wood, 1982; Woltring, 1985, 1986a; D’Amico and Ferrigno,
1992; Corradini et al. 1993; Gazzani, 1994; Giakas an
Baltzopoulos, 1997a). Unfortunately, the performance o
numerical differentiators in the human movement sciences
been limited to data sampled at relatively low frequenc
(50–100 Hz). Because accuracy in numerical differentiat
varies with sampling frequency (Harper and Blake, 198
animal biologists using high-speed video should exerc
caution when extrapolating results from human movem
studies.

In this study, a computer simulation experiment is used
compare the performance of ten numerical differentiat
algorithms and to explore the effects of video magnificat
and video speed on algorithmic performance. Algorithm
performances were evaluated by comparing estima
velocities and accelerations with reference values from
function known a priori. I focused on two aspects o
algorithmic performance: (1) the accuracy of an algorithm
reconstruction of velocities and accelerations throughout 
duration of a movement (which may be arbitrarily defined) a
(2) the accuracy of estimated maximum velocities a
accelerations.

Materials and methods
Generation of simulated data

To create reference velocity and acceleration histories w
known values, I digitized the acceleration profiles illustrated
Figs 3–7 of Harper and Blake (1990). These data were fr
two escape responses of a rainbow trout Oncorhynchus mykiss
and three escape responses of a Northern pike Esox luciusand
were originally measured with an accelerometer surgica
implanted into the body of the individual (Harper and Blak
1990). The figures were digitized with between 93 and 1
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unequally spaced points. For each raw trace, I used a lin
regression between each pair of adjacent points as 
interpolator and divided the measured function into 80
equally spaced points. At a sampling rate of 60 Hz, 5–6 poi
would be sampled from the reference data, which is below 
minimum number of points for some of the algorithms. 
therefore added enough points with zero acceleration to 
beginning of the reference sequences to allow an additio
two points when sampled at 60 Hz. Because the same refere
sequences were used for all simulations, this addition increa
the number of points sampled at 125, 250 and 500 Hz by 4
and 16, respectively. The total numbers of points, Nref, in the
reference profiles for Figs 3–7 of Harper and Blake (199
were 10 199, 10 024, 10 527, 10 199 and 10 077, respectiv
The reference figures are illustrated in Fig. 1. I generated 
five reference displacement profiles by doubly integrating t
acceleration data using:

and

where ∆t is the time between points in the reference sequen
ai is the reference acceleration, vi is the reference velocity and
yi is the reference displacement at time i. The initial velocity
and acceleration were set to zero.

Four different levels (60, 125, 250 and 500 Hz) of vide
speed (VS) were simulated by sampling every kth point of the
Nref reference points where:

The period, T, of each reference response was estimated fr
Figs 3–7 of Harper and Blake (1990). I simulated the rando
effect of starting the camera anywhere within the half-interv
1/(2VS) by initiating sampling at a random time, r, within the
range 0<r<1/(2VS). I simulated the effect of digitizing pixels,
which have discrete values, rather than actual displaceme
with continuous values, by transforming the sampled distan
into pixels:

where BL is the body length of the fish, HR is horizontal
resolution and VM (video magnification) is the number of
screen widths contained in one fish body length. I used the f
length of each individual (Harper and Blake, 1990) for BL and
a typical horizontal resolution of a high-speed video came
(480 lines) for HR. Measurement error is a function of both th
magnitude and frequency of incorrectly digitizing the corre
pixel and the amount of magnification (level of VM). I
simulated measurement error by varying VM and holding the

y i
* = round y i

HR ×VM
BL

(4),( )

  
k =

Nref −1

VS × T
. (3)

   y i = ∆t
vi + vi–1

2
+ y i–1 (2)( ) ,

   vi = ∆ t
ai + ai –1

2
+vi–1 (1)( )
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Fig. 1. Profiles of the five acceleration histories that w
simulated for this study. The original data, from Harper and Bl
(1990), were measured using an accelerometer. Simulated
sets were sampled from these profiles at four different samp
frequencies, or video speeds (VS), and four levels of video
magnification (VM).
magnitude and frequency of incorrectly digitized pixel
constant. Four different levels of VM were simulated: 0.25×,
0.5×, 1× and 2×, where × represents screen widths per bod
length (hence, 0.5 of the body length would be visible with
the screen width at 2×). I added a one pixel error to N/3 points,
where N is the number of sampled points in the simulate
sequence. In a test of digitizing error using a clearly defin
marker on a moving fish, five-sixths of the trials had the sam
pixel value while one-sixth differed by one pixel; hence, m
simulated error is large, by comparison. The sign of the add
error was random. Finally, error was constrained to occur
the points in which the fish was moving (i.e. no error was add
to points sampled from the initial sequence of zer
displacement).

The level of error, or roughness of the data, can be compa
with other data sets using:

(Corradini et al. 1993). Corradini et al. (1993) noted that
‘Lanshammar (1982a) considered a value of 0.87 to be realisti
whereas Hatze (1981) judged data with [r] equal to 7.28 to 
severely contaminated by noise’. The mean values of r for VM
of 2×, 1×, 0.5× and 0.25× were 0.57, 1.14, 2.25 and 4.4,
respectively.

To generate a sample of estimates within each VM×VS
combination, I sampled the reference sequence 100 times, e
time starting the sampling from a random time and adding o
pixel error of random sign to one-third of the sampled value
With each simulated sequence, I estimated instantane
velocities and accelerations using the methods described be
and converted these estimates back into the original un
(m s−2) using the inverse of equation 4.

Four performance statistics were compared among t
algorithms. VRMSE is the per cent root mean square erro
(RMSE) of the velocity estimates, v̂i, taken with respect to the
true velocities, v, for the middle 80 % of the sampled times
within the sequence:

The first and last 10 % of the data points were excluded fro
the computation of RMSE to avoid the large edge effects th
occur with some of the algorithms. Vmax is the per cent error
of the estimated maximum velocity:

ARMSE , the per cent root mean square error of the accelerat
estimates, and Amax, the per cent error of the estimated

   
Vmax =

max(vi) – max(vi)

max(vi)
×100 . (7)

   

VRMSE =
(vi – vi)Σ

i = round(0.1 N)

round(0.9N)

(vi)Σ
i = round(0.1N)

round(0.9N) × 100 . (6)

   r =
σnoise
σ signal

× 100 (5)

ere
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maximum acceleration, were calculated by substituti
accelerations for velocities in equations 6–7.

Numerical differentiation algorithms compared (Table 1)

Moving regression (MR)

Given a vector of N sampled positions, yi, measured every
∆t seconds, derivatives are commonly estimated by backwa
forwards or first central differences:

and

respectively. While these simple estimates using line
regression are extremely sensitive to measurement er
polynomial regressions through five or more points a
potentially more robust (Lanshammar, 1982a). Lanczos (1956)
described a simple solution to smooth noisy data and estim
first and second derivatives based on a five-point piecew
quadratic polynomial regression. In the method of Lancz
(1956), derivatives are not computed by differentiating 
quadratic function but, instead, are estimated directly by tak
a weighted average of the two (first derivative) or four (seco
derivative) smoothed values immediately prior to an
following the point of interest. I implemented the MR
algorithm directly from Lanczos (1956) with no modification
Prior to the numerical differentiation, I used the fourth-ord
central differences to smooth the raw data (Lanczos, 1956

Automated bidirectional second-order Butterworth digital
filter (BF)

I used the bidirectional second-order Butterworth filte
described in Winter (1990), but employed a fully automat
method for choosing the optimal cut-off frequency, fc. Winter

   dy
d t

= 1
2∆ t

yi – yi–1 + yi+1– yi (10)( ) ( ) ,

   dy
d t

= 1
∆t (yi+1– yi (9))

   dy
d t

= 1
∆t (yi – yi–1) (8),
Table 1.Summary information on th

MR Five-point quadratic moving regressi
BF1 Butterworth filter using minimized au
BF2 Butterworth filter using random resid
PSA1 Power spectrum analysis using SF=
PSA2 Power spectrum analysis using SF=
PSA3 Power spectrum analysis using Butt
PSA4 Power spectrum analysis using quin
KPF Kosarev–Pantos approximation of th
GCV Generalized cross-validatory quintic 
MSE Predicted mean square error quintic

SF is the sharpening factor.
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(1990) developed a semi-automatic method to find fc from the
regression of root mean square error (RMSE), measured acr
a range of cut-off frequencies, against these cut-o
frequencies. In this residual analysis (RA), the RMSE is th
error from the unfiltered function, not the true function, which
is unknown. A problem with implementing this as a
generalized ‘black-box’ procedure is that it is unclear whic
frequencies to include in the linear regression.

Instead of using Winter’s (1990) approach, I employed a
autocorrelation analysis of the residuals and used tw
different criteria for finding the optimal cut-off frequency.
For each potential cut-off frequency between 0 and 0.5fs
(where fs is the sampling frequency), taken at 0.1 Hz
intervals, I computed the autocorrelation function of the N
residuals. The sum of the squared autocorrelations (SSRA)
each lag, normalized by the autocorrelation at lag zero, w
used as a measure of the residual autocorrelation. The fi
optimal fc was chosen as the value resulting in the minimum
SSRA (Cappello et al. 1996).

For the second estimate of the optimal fc, I compared the
observed SSRA at each potential fc with the upper ninetieth
percentile of SSRAs computed from N random normal
variates. Any set of residuals with an observed SSRA belo
this ninetieth percentile is considered not significantly differen
from a random time series. The optimal fc was chosen as the
lowest value that resulted in a ‘random’ SSRA. I refer to th
minimization method as BF1 and the comparison with 
random time series method as BF2.

For both variants of the optimal Butterworth filter, I first
extrapolated the data using a quadratic polynomial. At each t
of the series, I used a quadratic polynomial through seven 
N>10) or five (if N<10) points and added N/2 points at equal
intervals using the quadratic coefficients. This poin
extrapolation has been shown to improve the efficacy of 
filtered function and its derivatives (D’Amico and Ferrigno
1990; Smith, 1989). Smith (1989) found that a linea
extrapolation method was the best of several alternatives (b
not including a quadratic polynomial method). In my
exploration of several extrapolation algorithms, I found 
quadratic polynomial extrapolation performed better than 
linear extrapolation.
e ten algorithms compared in this study

on (Lanczos, 1956)
tocorrelation optimization (Winter, 1990; Cappello et al.1996)
ual optimization (Winter, 1990; this study)
1 (D’Amico and Ferrigno, 1990, 1992)
2 (D’Amico and Ferrigno, 1990, 1992)
erworth filter (D’Amico and Ferrigno, 1990, 1992; this study)
tic spline filter (D’Amico and Ferrigno, 1990, 1992; this study)
e Wiener filter (Gazzani, 1994)
spline (Woltring, 1985, 1986a)
 spline (Woltring, 1985, 1986a)
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Power spectrum analysis (PSA)

D’Amico and Ferrigno (1990) developed a method 
finding the optimal fc from the power spectrum density of th
observed data. D’Amico and Ferrigno (1992) referred to th
method as the linear-phase autoregressive model-ba
derivative assessment algorithm (LAMBDA). They discuss
a parameter, the sharpening factor (SF), that increases
decreases the length of the filter window used in the filter
decrease in SF makes the filtered derivatives more peaked
their initial description of LAMBDA, D’Amico and Ferrigno
(1990) suggested setting SF equal to 2, but later suggest
value of 1 if only the peak acceleration is desired (D’Amic
and Ferrigno, 1992). I used both values, referring to these
PSA1 and PSA2. I extrapolated the data using the quadr
polynomial method described above instead of the line
prediction method suggested by D’Amico and Ferrign
(1990) as I found that the former resulted in more sta
values at the tails. Even with this extrapolation, the errors
the tails could be large. To attempt to reduce the effects
error at the tails, I used the optimal fc determined by the PSA
but filtered the data using either the bidirectional secon
order Butterworth filter (PSA3) or the quintic spline (PSA4
For the spline, I converted the cut-off frequency, fc, into its
approximate spline smoothing parameter equivalent using
equation:

p= exp[−2mln(2πfc) − ln(dt)] , (11)

where m is the spline order (here, equal to 3) and p is the
magnitude of the smoothing parameter (see above). T
equation is a simple rearrangement of the terms for compu
the Butterworth equivalent cut-off frequency given a value 
p (Woltring, 1986b).

Kosarev–Pantos filter (KPF)

Gazzani (1994) described the Kosarev–Pant
approximation to the Wiener filter, which estimates the optim
filter coefficients from the distribution of the Fourier
transformed data. I implemented the KPF routine exactly
listed in the appendix of Gazzani (1994). In addition, I od
extended the data in order to create a pseudoperiodic t
series (Gazzani, 1994).

Generalized cross-validatory (GCV) and predicted mean
squared error (MSE) quintic spline 

A regularized spline of order 2m is a piecewise polynomial
of degree 2m−1 that minimizes the sum:

where t is time (or any other independent variable), y is the
raw, dependent data, ŷ is the smoothed dependent data andp
is the regularizing, or smoothing, parameter (Woltring, 198
1986a). The first 2m−2 derivatives of each local polynomia
of the spline are continuous at each value of ti, or knot.

   
p y (m)(t)

2
d t

t1

tn

+ y (ti) –y (ti)
2Σ

i =1

n

(12),
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Quintic splines have a half-order m=3. The degree of
smoothness is controlled by the parameter p. In the
simulation, I used two methods to estimate an optimal va
of p on the basis of statistical considerations of the data on
(1) the p value that gives a mean square error (MSE) clos
to an error variance known a priori and (2) a generalized
cross-validation (GCV) criterion (Craven and Wahba, 197
Woltring, 1985, 1986a). The GCV and MSE alternatives
were referred to by Woltring (1986b) as mode 2 and mode 3
respectively. I used:

error = 2[0.5(1−h) +h]2 (13)

as the error variance for MSE, where h is 1/3, the frequency
of incorrectly locating the true pixel (see above). The value 
reflects the maximum expected error in locating an actual po
as a result of digitizing a pixel (i.e. the true point lies with
half a pixel of the digitized point). The value within th
brackets is a rough estimate of the expected error deviatio
either the x or y direction. The expected error in any directio
is the square root of twice the squared value within t
brackets; hence, the error variance is simply twice the squa
value.

All algorithms were written in either Pascal or Fortran77 (L
Fortran Plug-in for Metrowerks Code Warrior, Fortne
Research Inc.) and compiled using CodeWarrior Academ
Gold 11 (Metrowerks Inc.) for the Power Macintosh. All o
these methods are available in a single software progr
QuickSAND (Quick Smoothing and Numerica
Differentiation) for the Power Macintosh and clones runnin
MacOS (Walker, 1997).

Results
Global performance

The distributions of VRMSE, Vmax, ARMSE and Amax for each
algorithm, pooled across sample, VM and VS, are summarized
using box plots (Fig. 2). In these plots, the median is a meas
of a method’s tendency, while the error variation (the varian
of the errors around zero and not around the distributio
mean or median) is a measure of a method’s robustnes
ability to avoid large errors. Differences in the poole
distributions among algorithms were relatively small for th
velocity but large for the acceleration measures. For VRMSE,
the median estimates differed trivially but the distributions 
BF2, PSA1 and KPF were positively skewed, indicating le
robustness. In contrast, GCV and, especially, MSE were 
most robust algorithms for estimates of the entire veloc
history over the range of VM and VSsimulated here. For Vmax,
the MR, BF1, PSA4, GCV and MSE algorithms had genera
symmetrical distributions of small variance with slightl
positive medians (<5 %). The negatively skewed distributio
of BF2, PSA1–3 and KPF indicate a tendency to underestim
Vmax. Again, the two spline algorithms were the most robus

As for the velocity estimates, the pooled distributions sugg
that MSE and, to a lesser degree, GCV had a better glo
performance for acceleration estimates than did the ot
algorithms. For ARMSE, the MSE distribution not only had the
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Algorithm

Fig. 2. Box plot representations of the
distributions of the per cent errors for (A)
VRMSE, (B) Vmax, (C) ARMSE and (D) Amax.
The plot for each algorithm (see
abbreviations in Table 1) summarizes the
distribution of the errors pooled across the
five displacement profiles of Harper and
Blake (1991), the four levels of video
magnification (VM), the four levels of video
speed (VS) and the 100 resampled
displacements for each combination of
profile×VM×VS. The box represents the
twenty-fifth and seventy-fifth percentiles.
The line within the box is located at the
distribution’s median. The lines (or
whiskers) extending from the box mark the
tenth and ninetieth percentiles. VRMSE and
ARMSE are the per cent root mean square
error of the velocity and acceleration
estimates, taken with respect to the true
velocities and accelerations, for the middle
80 % of the sampled times within the
sequence. Vmax and Amax are per cent
differences between the estimated and true
values of the maximum velocity and
acceleration for each sampled profile.
median with the smallest per cent error but also had the le
positive skew, indicating its robustness. In contrast, t
distribution of GCV had a relatively small median error but w
highly positively skewed. Other methods that were prone 
large errors were BF1, BF2, PSA1 and KPF. The distribution
Amax indicates that all methods tend to underestimate maxim
accelerations. The three methods with the smallest median
cent error, BF1, PSA1 and GCV, were associated with hig
positively skewed distributions. In contrast, the PSA2, PSA
PSA4 and, especially, MSE algorithms had moderate 
relatively large median errors but were far less likely to result
grossly incorrect estimates of maximum acceleration.

Local performance: effects of video magnification and spee

The global error distributions (Fig. 2) fail to highlight the
complex interactions between algorithm, VM and VS on
algorithmic performance (Figs 3–6). The major features of t
distributions of the performance measures within each VM×VS
combination (Figs 3–6) are (1) the marked decrease in 
ast
he
as
to
 of
um
 per
hly
3,
to

 in

d

he

the

magnitude of both the median error and the error variance fr
60 to 250 Hz and the slight (high VM) to large (low VM)
increase in error from 250 to 500 Hz (especially conspicuo
for the acceleration data), (2) the decrease in error w
increasing VM, especially at high VS, and (3) the decrease in
variance among methods from 60 to 250 Hz but the incre
from 250 to 500 Hz, a pattern that was particularly conspicuo
at low VM. There were exceptions to 1: throughout the increa
in VS, both the maximum and RMSE performances of MS
and KPF improved, the RMSE performances of PSA1
improved and the acceleration performances of GC
worsened.

For VRMSE (Fig. 3), the two spline methods were clearl
superior at 60 Hz. At 125 Hz, the MR, BF2 and, especial
PSA1 and KPF algorithms performed the worst at the high
VM, but differences among methods became increasingly triv
as VM decreased. In contrast, for both 250 and 500 H
differences among algorithms were trivial at the highest VM but
were increasingly large as VM decreased. At 500 Hz and 0.25×
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Fig. 3. Box plot representations of the distributions of the per cent errors for VRMSE pooled across the five profiles and 100 resampled
displacements for each combination of VM×VS. VRMSE is the per cent root mean square error of the velocity estimates, taken with respect to the
true velocities, for the middle 80 % of the sampled times within the sequence. (A) 2× magnification, (B) 1× magnification, (C) 0.5×
magnification and (D) 0.25× magnification. VM is video magnification, VSis video speed. Conventions as in Fig. 2.
magnification, the MR, BF1 and GCV algorithms perform
the worst. The general patterns occurring in the distribution
VRMSE also occurred in the distributions of Vmax (Fig. 4). At 60
and 125 Hz, the two spline algorithms had both the smal
ed
s of

lest

median errors and the smallest error variances, especially
high VM. The KPF method performed poorly at low VSbut the
best at high VS, particularly at high VM.

For both ARMSE (Fig. 5) and Amax (Fig. 6), the two spline
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Fig. 4. Box plot representations of the distributions of the per cent errors for Vmax pooled across the five profiles and 100 resampled
displacements for each combination of VM×VS. Vmax is the per cent difference between the estimated and true value of the maximum velocity
for each sampled profile. (A) 2× magnification, (B) 1× magnification, (C) 0.5× magnification and (D) 0.25× magnification. VM is video
magnification, VSis video speed. Conventions as in Fig. 2.
algorithms were clearly superior at 60 Hz, especially at hi
VM. While MSE continued to have the best performance w
increasing VS for ARMSE, the KPF algorithm had the bes
performance for Amax at high VS. PSA1–4 had relatively good
gh
ith
t

performance at low VM for both ARMSE and Amax. The low
sharpening factor of PSA1 resulted in a highly unstab
performance for both acceleration measures at 60 and 125
but good performance, relative to the other PSA variants, 



989Estimating velocities and accelerations

50

MR BF PSA KPF

21 3 41 2 GCV MSE

Spline

60 125 250 500

Video speed (Hz)

A 2×
100

80

60

40

20

0
B 1×

100

80

60

40

20

0
C 0.5×

100

80

60

40

20

0
D 0.25×

100

80

60

40

20

0

A
R

M
S

E 
 (%

 e
rr

or
)

Fig. 5. Box plot representations of the distributions of the per cent errors for ARMSE pooled across the five profiles and 100 resampled
displacements for each combination of VM×VS. ARMSE is the per cent root mean square error of the acceleration estimates, taken with respect
to the true accelerations, for the middle 80 % of the sampled times within the sequence. (A) 2× magnification, (B) 1× magnification, (C) 0.5×
magnification and (D) 0.25×magnification. VM is video magnification, VSis video speed. Conventions as in Fig. 2.
estimates of Amax (but not ARMSE) at 250 and 500 Hz. The MR
method performed relatively well for estimates of bo
maximum acceleration and the entire acceleration profile
th
 at

high VM and VS, and at high VM and moderate VS, but poorly
at either low VSor at high VSand low VM. For ARMSE, BF1
performed better than BF2 at 60 and 125 Hz but worse at 2
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Fig. 6. Box plot representations of the distributions of the per cent errors for Amax pooled across the five profiles and 100 resampled
displacements for each combination of VM×VS. Amax is the percent difference between the estimated and true value of the maximum
acceleration for each sampled profile. (A) 2× magnification, (B) 1× magnification, (C) 0.5× magnification and (D) 0.25× magnification. VM is
video magnification, VSis video speed. Conventions as in Fig. 2.
and 500 Hz. For Amax, BF1 performed better than BF2 at 60
125 and 250 Hz. The better of BF1 and BF2 performed w
relative to the other algorithms, at 250 Hz but very poorly 
lower and higher video speeds.
,
ell,
at

Discussion
Computer simulation experiments have proved to be 

powerful means of evaluating alternative numerical metho
over a specified parameter space (Rohlf et al.1990; Oden and
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Fig. 7. Simulated acceleration profile used to test for the effec
oversmoothing due to low sampling frequency on the tendency o
algorithm to underestimate maximum accelerations.
Sokal, 1992; Martins and Garland, 1991). The comparison
numerical differentiation algorithms has a relatively lon
history but has generally been limited to qualitativ
comparisons of only a few model sequences (Zernicke et al.
1976; Pezzack et al.1977; McLaughlin et al.1977; Wood and
Jennings, 1979; Cappozzo and Gazzani, 1983). Two re
simulation studies that have compared the performance
several numerical differentiation algorithms (Corradini et al.
1993; Giakas and Baltzopoulos, 1997a) are of limited use to
anyone using high-speed video because of the low (50–100
sampling frequency. Additionally, while Giakas an
Baltzopoulos (1997a) compared the performance for a larg
number of signals, they reported only the relative rankin
among the algorithms and not the actual or per cent errors.
simulation in the present study, which compared t
performance of ten algorithms across different combinations
video magnification and speed, was designed to lend so
guidance to the choice of numerical differentiation algorith
for biologists investigating animal movement.

Before discussing the results, I want to emphasize sev
caveats of this analysis. (1) The simulated behavior was hig
aperiodic and non-stationary, which may bias the results
favor of methods that do not assume a periodic or station
signal (Woltring, 1985). Nevertheless, the relatively go
performance of the PSA and KPF algorithms at high VS
suggests that detrending and, if necessary, odd-extension
adequate for these data. Additionally, a comprehens
simulation of periodic signals should be undertaken to evalu
the performance of the spline methods with periodic data.
The optimal VS for an algorithm should not be considere
absolute. Instead, the important comparative parameter sh
be some measure of the frequency of the signal’s inflect
points, for the derivative order of interest, relative to sampli
frequency. (3) With the exception of the MSE algorithm, I ha
intentionally treated the process of numerical differentiation
 of
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a fully automatic methodology with no input of eithe
subjective or objective external knowledge (the MS
algorithm differs from the others by employing an estimate 
the measurement error). The wisdom of this approach
debatable, but these results do show that good estimates
occur in complete ignorance of either the processes genera
the signal or the mechanics of the algorithms. (4) Woltrin
(1991) suggested that the optimal smoothing parameter m
differ for derivatives of different order and that more
smoothing may be necessary for higher-order derivatives (
also Hatze, 1981; Giakas and Baltzopoulos, 1997b). The
smoothness of the derivatives investigated in the present st
were determined by the measured function only (zeroth-ord
derivative). (5) Finally, this study explicitly simulated data
derived from video which, in general, has far lower resolutio
than high-speed film. Film-derived data should therefore ha
smaller expected errors than video-derived data at compara
filming magnification and speed.

Comparative performance

The simulations reported here suggest that no meth
performs best across all regions of the VM×VS parameter
space. This conclusion is not surprising and supports 
findings of analyses that simulated data sampled at low
frequencies than those reported here (Corradini et al. 1993;
Giakas and Baltzopoulos, 1997a). Because of the variation in
rank-order performance with changes in VM and VS, the global
performance statistics should be treated cautiously. Despite
caution about using a universal differentiator, the MSE quin
spline algorithm was highly stable over the entire parame
space simulated here and can be generally recommend
When outperformed by another algorithm, both the differen
between the estimates and the error from the true value w
very small. A potential, but unexplored, problem with the MS
algorithm is its sensitivity to misestimates of the input error

Corradini et al. (1993) compared the second-derivativ
performance of five different numerical differentiator
including a heptic spline version of MSE (the four othe
algorithms in their study were not investigated here). Fiv
simulated functions sampled between 50 and 100 Hz were u
for the analysis. Supporting the results reported here, Corrad
et al. (1993) showed that the MSE algorithm performed bett
than the other four functions for estimates of the enti
acceleration profile.

The GCV performed very well over much of the paramet
space. For Amax, in particular, at least 50 % of the GCV
estimates had relatively small errors at nearly all combinatio
of VM and VS. At high VS, however, the GCV algorithm
proved unstable, often resulting in severely overestimat
velocity and acceleration estimates. This suggests that,
general, if the GCV acceleration profile does not loo
markedly noisy, the resulting estimates should be reasona
It is somewhat surprising that GCV performed as well as it d
at 60 and 125 Hz. Woltring (1985, 1986a) explicitly warned
against using the GCV criterion on data sets with fewer th
40 points; in the present study, the ranges of sample size

t of
f an
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the data at 60 and 125 Hz were 7–8 and 15–16 poi
respectively.

Giakas and Baltzopoulos (1997a) recently compared GCV
with five other algorithms including PSA3 and Winter’s (199
residual analysis (RA) method of estimating the optim
Butterworth filter (similar in spirit to BF1 and BF2). Giaka
and Baltzopoulos (1997a) evaluated the performance of th
algorithms on data from 24 simulated signals sampled at 50
with 30 different levels of added noise. Each signal w
sampled only once for a level of added noise. Giakas 
Baltzopoulos (1997a) reported global rankings only (i.e
pooled over noise level) for estimates of the whole profile a
found PSA3 to have better performance than both GCV a
RA for both velocity and acceleration estimates. Actual er
levels were not reported, except for a single signal (whi
curiously, showed GCV performing better than PSA3 f
nearly all levels of added noise).

The MR algorithm is a commonly used method fo
estimating accelerations in the animal locomotion literatu
especially for measures of fast-start performance (Webb, 19
1978; Domenici and Blake, 1991, 1993; Kasapi et al. 1993;
Law and Blake, 1996). While the MR algorithm performe
well for estimating velocities for data sampled at or abo
125 Hz, it only performed well for estimates of acceleration
250 Hz. At lower sampling frequencies, the MR algorith
severely underestimated accelerations; at higher frequencie
severely overestimated accelerations.

To stabilize edge effects at the beginning and end o
sequence, D’Amico and Ferrigno (1990, 1992) used forwa
and backward linear prediction to extend the observ
sequence prior to filtering. While my implementation of th
linear prediction extension worked well for the well-know
displacement data of Pezzack et al. (1977), unusually large
errors at the ends occurred for many of the simulated seque
analyzed in the present study. My use of quadratic polynom
regression to extend the data resulted in edges with less e
than occurred with the linear prediction extension. In th
exploration of the PSA differentiator, D’Amico and Ferrign
(1990, 1992) varied the magnitude of the sharpening fac
(see Materials and methods) between 1 and 5 and conclu
that a value of 1 was best if acceleration maxima are des
but a value of 2–3 tended to minimize the RMSE. D’Amic
and Ferrigno’s (1992) conclusion is supported for t
simulated fast-start data analyzed here; PSA1, with
sharpening factor of 1, performed much better than the ot
PSA algorithms for Amax. Indeed, PSA1 was one of the be
methods for Amax at low VM and high VS. PSA2–4 all
performed similarly, except that PSA3–4 had smaller errors
the edges than did PSA2 (this result is not apparent in 
RMSE figures since only the intermediate 80 % of the poi
were used for the calculation of RMSE).

Lanczos’ moving regression (MR) method

The use of numerical differentiation to estimate maximu
acceleration was criticized by Harper and Blake (1989), w
showed that estimates using typical film speeds (250 Hz) 
nts,

0)
al
s
e
Hz
as
and
.
nd
nd

ror
ch,
or

r
re,
77,

d
ve
 at
m
s, it

f a
rd
ed
e
n

nces
ial
rror

eir
o
tor
ded
ired
o

he
 a
her
st

 at
the
nts

m
ho
and

magnification have an expected error of approximately 40
Such high errors certainly preclude reasonable reconstruct
of locomotor dynamics or comparisons of acceleratio
performance. Harper and Blake (1989) recognized two sour
of errors: sampling frequency error (SFE) and measurem
error (ME). While the presence of these errors is inherent
numerical differentiation, their influence on derivative
estimates can be minimized by the selection of an appropri
numerical differentiator. Harper and Blake (1989), followin
Webb (1977, 1978), used Lanczos’ moving regression (M
algorithm to estimate accelerations (Lanczos, 1956). T
pattern of the error distributions for the MR algorithm observe
in this study (Figs 3–6), that is, an initial decrease and fin
increase in per cent error, with increasing VS, closely
resembles the expected pattern discussed by Harper and B
(1989).

A major advantage of the MR algorithm is that it is
computationally trivial, while its chief disadvantage is that 
does not allow the user to control the degree of smoothing [
Lanshammar (1982a) for a more flexible use of piecewise
polynomials]. The second derivative of a quadratic polynomi
is constant and, if the function’s second derivative varies, t
computed second derivative will be a weighted average of 
function’s second derivatives at each of the points used
estimate it. As a consequence, estimates of the maxim
second derivative of a function sampled without noisewill
always be too low. Harper and Blake (1989) refer to this sour
of error as sampling frequency error because, as the funct
is sampled at smaller intervals, variation in the function
second derivative at any five neighboring points becom
increasingly smaller, and the polynomial’s second derivati
will approach that of the sampled function.

Algorithms that allow different levels of smoothing are no
necessarily prone to excessive underestimation of maxim
velocities and accelerations due to low sampling frequenc
For each of the ten algorithms investigated in the present stu
I give the per cent errors (Table 2) for estimates of maximu
acceleration of a function resembling that of Harper and Bla
(1989) and sampled without errorat 60 Hz (Fig. 7). With the
exception of the KPF algorithm, the MR algorithm was mo
affected by sampling frequency error. In contrast, GCV an
MSE each had an error of 0.06 % and were, essentia
unaffected by sampling frequency error, as defined by Harp
and Blake (1989). Nevertheless, as illustrated in Fig. 6, GC
and MSE were affected by sampling real data with noise a
low sampling frequency. The underestimation of accelerati
in the GCV and MSE (and other) algorithms results fro
sampling at some time prior to and following pea
acceleration, but not at the peak itself, a problem that increa
with decreasing sampling frequency. While only som
methods are affected by oversmoothing due to low sampli
frequency (Harper and Blake’s sampling frequency error), 
methods are affected by missing an event due to low sampl
frequency (note that, in the heuristic example of Fig. 7, th
peak was intentionally sampled to avoid this source 
sampling frequency error).
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Table 2.Estimates of maximum acceleration and their pe
cent error for the function in Fig. 7 sampled at 60 Hz witho

added noise

Algorithm Maximum acceleration Error (%)

GCV 79.95 −0.06
MSE 79.95 −0.06
PSA4 75.56 −5.55
PSA1 73.28 −8.4
PSA2 70.66 −11.68
BF1 66.73 −16.59
PSA3 66.54 −16.82
BF2 51.57 −35.54
MR 49.1 −38.62
KPF 29.32 −63.35

The true maximum acceleration was 80.0 m s−2. Because no noise
was added to the sampled points, the error reflects underestimat
the maximum acceleration due to oversmoothing.

See Table 1 for an explanation of the algorithms.
Harper and Blake (1989) argued that the measurement e
component of the total error in estimating maximu
accelerationsincreaseswith increasing film speed becaus
digitizing error, although constant in magnitude, increas
relative to the distance moved by the animal betwe
successive frames. As a result, the total error increase
speeds above the optimum (Harper and Blake, 1989). T
argument is contrary to the analysis of derivative errors 
Lanshammar (1982b), who suggested that errors wil
continually decrease with increasing VS. Harper and Blake’s
(1989) argument may explain the extreme overestimation
Amax for the MR algorithm at 500 Hz when VM was <0.5×. In
addition to MR, the BF1, BF2 and GCV algorithms als
markedly overestimated maximum accelerations at high VS.
Importantly, however, some algorithms were resistant to t
source of error, at least at the video speeds and magnit
analyzed in this study. PSA2, PSA4 and MSE nearly alwa
underestimated maximum accelerations, and the magnitud
this underestimation decreased with VS. PSA1, PSA3 and KPF
often overestimated maximum accelerations at high but no
low VSbut, again, the absolute error decreased with increas
VS, at least up to 500 Hz. The results of the present study, t
show that changes in error, with respect to VS, are more
complicated than suggested by either Harper and Blake (19
or Lanshammar (1982b).

How to get better results

The performance of the automated differentiating algorith
over the parameter space simulated in this study sugges
more optimistic role for numerical differentiation in studies 
comparative performance and locomotor dynamics th
concluded by Harper and Blake (1989). Two properties 
important when choosing a numerical differentiator: t
expected performance of an algorithm and the robustnes
the algorithm. The expected performance, represented in 
study by an algorithm’s median performance, measures 
rror
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bias of an algorithm. For example, the MSE algorithm
consistently underestimates the actual maximum accelerati.
If enough were known about this bias, a correction factor cou
be added to estimates of Amax. One caveat to using such a
correction factor is that not only does the magnitude of the b
vary with VM and VSbut it should also vary with the shape o
the displacement profile (the effects of which were no
measured in this study).

Perhaps more important for comparative performan
analyses is an algorithm’s robustness, represented by the e
variance of the performance estimates. For example, 
median per cent error for Amaxby the GCV algorithm at 500 Hz
and 1× magnitude was only −0.3 %, but more than 10 % of the
estimates were overestimated by over 100 %. In contrast, 
MSE algorithm had a slightly higher median per cent err
(−9.5 %) but a much smaller error variance. As a resu
although the MSE may underestimate the actual maximu
acceleration, it should underestimate the maximum by a simi
magnitude for all individuals.

The results of the video data presented here suggest 
even the best numerical differentiation algorithms may res
in error variation large enough to preclude comparisons 
subtle performance variation. For example, the large erro
associated with the MR and GCV algorithms at high VSmay
explain the failure to find significant differences in maximum
acceleration between closely related fish using film data a
the MR algorithm (Law and Blake, 1996) or between sampl
subjected to different treatments using video data and the G
algorithm (Beddow et al. 1995). Because film data allows
much higher resolution than video, error variances should 
minimized when using the KPF, PSA, GCV or MSE
algorithms in combination with high-speed film.

While the RMSE associated with estimating velocit
profiles was low, it was uncomfortably high for the
acceleration profiles (the best performers had error rates of 1
% at 500 Hz and 2× and 27.0 % at 500 Hz and 0.25×). It is well
known that numerical differentiators are highly unstable at th
edges of a sequence. Some of these methods attempte
control for this by artificially extending the sequence eithe
after (KPF) or before and after (BF, PSA) the origina
sequence. Nevertheless, edge effects were apparent (the re
why the measure of RMSE included only the intermedia
80 % of the points). Clearly, there is no substitute for actu
measurements of displacement before and after the seque
of interest. Additionally, if using the GCV spline, the adde
points should increase the accuracy of the estimate of 
optimal smoothing parameter.

Given the large amount of data in this study, I did no
explore the causal explanation of the high RMSE; that is, if t
general pattern of peaks and troughs present in the t
acceleration profile was faithfully reconstructed despite th
large RMSE or if the entire shape of the profile was incorrec
estimated. This is an important distinction because complet
misshapen estimates of acceleration profiles could lead 
highly inaccurate dynamic models of animal movement. 
useful addition for future simulations would be to explor
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correlates of algorithmic performance. For example, do 
have more confidence in an estimate if all algorithms gi
similar values? Similarly, numerically estimated accelerati
profiles of the center of mass during steady swimming in a fi
showed little variation within swimming speed, either amon
sequences or among individuals (Walker and Westneat, 19
Does the similarity in these sequences indicate good estim
of the acceleration profile or were all of the profiles incorrec
estimated in the same way? Additional simulations cou
investigate whether we should have more confidence in 
numerically differentiated results, given a similarity in profil
shapes.

Finally, time-averaged performance measures have b
suggested as alternatives to instantaneous estimates in ord
avoid the potentially large errors resulting from numeric
differentiation. Indeed, many studies of fast-start performan
report only the total distance travelled in some behavior o
velocity based on this distance and the duration of the tra
(Webb and Skadsen, 1980; Taylor and McPhail, 1986; Ea
et al. 1988; Jayne and Bennett, 1990; Norton, 1991; Swa
1992; Watkins, 1996). While time-averaged measures 
performance do not suffer from exponentially magnified err
propagation, they do suffer from masking proxima
explanations of performance variation. Many of the critic
features of the acceleration profiles measured by Harper 
Blake (1990, 1991), including time to peak acceleration a
number of acceleration peaks, could not have been discove
using time-averaged performance measures. More importa
for studies of comparative performance, the variation 
acceleration profiles among individual fast starts (Harper a
Blake, 1990, 1991) demonstrates the complex relations
between the distance traveled during some arbitrary time 
maximum acceleration. This complex relationship sugge
that time-averaged measures of fast-start performance may
be a good indicator of acceleration performance. Inte
individual and intra-individual escape behaviors are high
variable and context-dependent (e.g. Huntingford et al.1994).
It seems likely that both high initial accelerations (e.g. rap
jumps) and high average velocities (e.g. escapes into a refu
can be closely related to survival, but the relative influence
each may depend on the context of the response. Becaus
both the complexity of fast-start movements and the variat
in escape behavior, time-averaged measures cannot rep
instantaneous measures of escape performance.

I thank Will Corning, Nora Espinoza, Melina Hale, Mar
Westneat, Brad Wright and two anonymous reviewers 
greatly improving the manuscript. This research w
performed while on the generous support of a Nation
Science Foundation Postdoctoral Research Fellowship in 
Biosciences Related to the Environment.
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