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Summary

We recorded echolocation calls from 14 sympatric fitting data improved the performance of the discriminant
species of bat in Britain. Once digitised, one temporal and function analysis by 2%, while the performance of a
four spectral features were measured from each call. The perceptron decreased by 2%. However, an increase in
frequency—time course of each call was approximated by correct identification rates when curve-fitting information
fitting eight mathematical functions, and the goodness of was included was not found for all species. The use of a
fit, represented by the mean-squared error, was calculated. hierarchical classification system, whereby calls were first
Measurements were taken using an automated process classified to genus level and then to species level, had little
that extracted a single call from background noise and effect on correct classification rates by discriminant
measured all variables without intervention. Two species of function analysis but did improve rates achieved by
Rhinolophuswere easily identified from call duration and  perceptrons. This is the first published study to use
spectral measurements. For the remaining 12 species, artificial neural networks to classify the echolocation calls
discriminant function analysis and multilayer back-  of bats to species level. Our findings are discussed in terms
propagation perceptrons were used to classify calls to of recent advances in recording and analysis technologies,
species level. Analyses were carried out with and without and are related to factors causing convergence and
the inclusion of curve-fitting data to evaluate its usefulness divergence of echolocation call design in bats.
in distinguishing among species. Discriminant function
analysis achieved an overall correct classification rate of
79% with curve-fitting data included, while an artificial Key words: echolocation, species identification, bat, discriminant
neural network achieved 87%. The removal of curve- function analysis, artificial neural network, call shape.

Introduction

Effective monitoring of echolocation calls is vital in many 1982; Pye, 1992, 1993; Parsons, 1996, 1998; Surlykke et al.,
studies of the ecology and conservation of bats (Fenton, 1997)993) and the analysis method and variables used to
The identification of individual bats, or members of the sameharacterise calls (Parsons and Obrist, 2000).
or different species, from their echolocation calls has proved Practically all published quantitative acoustic studies
difficult because of technological and analytical limitations,investigating individual and species identification of bats have
the ability to obtain truly representative calls under controlledised multivariate statistics, especially discriminant function
conditions and the extreme flexibility in call design exhibitedanalysis (DFA; e.g. Krusic and Neefus, 1996; Lance et al.,
by many species. The echolocation calls of different specie996; Murray et al., 1999; Neefus and Krusic, 1995; Obrist,
are also not equally conspicuous; several produce lowt995; Parsons, 1997; Vaughan et al., 1997; Zingg, 1990).
amplitude calls that are not easily detected (e.g. Fenton amEcently, two new techniques have been applied to classify the
Bell, 1981). Echolocation calls also vary both inter- andemitter of an echolocation call. Obrist et al. (2000) developed
intraspecifically because of the influence of acoustic cluttela system that digitises bat calls in real time and uses
morphology, age and foraging strategy (e.g. Bogdanowicz eslynergetic pattern recognition algorithms to perform species
al., 1999; Griffin et al., 1960; Jensen and Miller, 1999; Jonesdentification. The system compares incoming digitised calls
1999; Jones et al., 1992; Jones and Kokurewicz, 1994; Kalkwith a stored reference library of prototyped calls from known
and Schnitzler, 1989, 1993; Masters et al., 1995; Obrist, 1995pecies. Real-time recording systems are ideal because all the
Rydell, 1990). All these factors influence the structure of callinformation is retained in the recorded signal. Burnett and
and thus the ability of researchers to distinguish between themlasters (1999) used a self-organising map, a type of artificial
Other factors influencing successful identification includeneural network (ANN), to estimate the number of bats that
recording quality and methodology (Lawrence and Simmongroduced a number of echolocation calls on the basis of
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temporal and spectral measurements. Self-organising maps aagtworks were used to classify calls, and the results were
be used to identify intrinsic features contained in an input dateompared. Both analyses were carried out with and without the
set and use these to estimate natural groupings within data sételusion of shape information to judge the usefulness of shape
Neural networks have been successfully applied in other areas separating the calls of different species. This study is the
of bioacoustics, such as target classification from echoes Hiyst to include a measure of spectral shape and ANNs in an
cetaceans (Au, 1994; Au et al., 1995) and bats (Altes, 199&¢oustic system for identifying species of echolocating bat. We
Dror et al., 1995; Wotton and Jenison, 1997), and fofollow Jones and Barratt (1999) in our naming of the two
classifying the vocalisations of marine mammals (Deecke etryptic species of pipistrelle &4. pipistrellus(45 kHz phonic
al., 1999; Murray et al., 1998). In general, the ability of neuratype ofPi. pipistrellug andPi. pygmaeu$b5 kHz phonic type
networks to solve very complex acoustic problems has beef Pi. pipistrellug (Jones and van Parijs, 1993).
promising. However, they have never been used to identify the
echolocation calls of bats to species level. )

Multilayer perceptrons, a popular class of ANN, can be Materials and methods
‘taught’ to recognise patterns so that, when presented with Recording methods and call analysis
previously unseen data, they can classify them correctly. We recorded search-phase echolocation calls (as defined by
Learning is achieved by modifying synaptic weights betweei®riffin, 1958) outside known roosts (all species), on release
units of the network, termed neurones. Back-propagatiofrom the hand after capture by harp-trap or mist-igtotis
networks, a form of multilayer perceptron, use a gradientbechsteinii M. brandtii, M. daubentoniji M. mystacinusM.
descent algorithm to minimise the error caused byattererii and Plecotus auritup or at foraging sites where
misclassifications during training (Carling, 1992; Haykin,species and individual bats were identified unambiguously
1999; Rumelhart et al., 1986). In this way, they argNyctalus noctulaTable 1). All recordings were made in 1998
fundamentally different from DFA, which does not utilise anyand 1999 between May and October. To avoid recording the
error-minimisation algorithm. In general, back-propagationsame bats over several nights, only calls made on one night
networks give reasonable results when presented with inputgere analysed. We recorded calls as far away from the roost
they have never seen before. The ability of back-propagaticentrance as possible while still being able to ensure that the
networks to generalise makes it possible to train a network dmts recorded had emerged from that roost. Recordings were
a representative set of input/target pairs and obtain reliablesually made on-axis as the bat flew towards the microphone,
classifications without training the network on all possiblewhich was housed on a tripod approximately 1.2m above the
pairs. ground. Rarely was the bat at the same height above the ground

The measurements traditionally used to describe thas the microphone. Calls made as bats were released from the
echolocation calls of bats, such as duration, start frequency, ehdnd were recorded as far from the release point as possible,
frequency and the frequency with most energy, have also beafthough usually less than 2m from the microphone. With the
used in species identification studies. These measurements arkeeption oBarbastella barbastelluandNyctalus leisleriwe
static in that they do not describe how a call changes oveecorded each species at several distinct geographic locations.
time. Several studies have used mathematical functions e recorded a total of 698 calls. Of the bats known to breed
approximate the frequency-time course of echolocation calis Britain, only Pipistrellus nathusiiand Plecotus austriacus
(Masters et al., 1991; Masters and Raver, 2000; Parsons et alere not recorded.
1997). The purpose of these studies was to study the signal-We used two different recording methods. Initially, we used
processing capabilities of bats. However, these functions cam UltraSound Advice (USA; UltraSound Advice, London,
also be used as templates to describe the ‘shape’ of calls UiKK) S-25 bat detector (frequency response of microphone
terms of their deviation from each of the functions. 20-120kHz +3dB) linked to a USA portable ultrasonic

In this paper, we present the results of a study in which therocessor (PUSP). The PUSP, when triggered by the user as a
echolocation calls of 14 species of bat were recorded in thzat flew past the microphone, digitised a 2 s sequence of sound.
field using either time-expansion or high-speed sampling direGequences were sampled at 448 kHz with eight-bit precision
to computer. Calls were then analysed digitally, and thend time-expanded by ten times before being recorded to a
measurements were used to classify calls to species level. \Beny WD6 Professional Walkman. Calls were digitised to
measured temporal and spectral features of calls and usedmputer using the BatSound software (Pettersson Elektronik
eight mathematical functions to give an estimate of thé\B, Uppsala, Sweden) at a sampling rate of 44.1 kHz (effective
frequency—time course, or ‘shape’, of calls from 12 speciemte 441kHz) using the standard sound card contained in a
(calls produced by the tw&hinolophusspecies are easily Toshiba Satellite Pro laptop computer (model 4080XCDT,
identified using only temporal and spectral measurementsjoshiba of Europe, London, UK). From early 1999, we
Calls were described in terms of their approximation to theligitised echolocation calls directly to the laptop computer
functions. Automated analysis methods were developed t@.e. not time-expanded). Using the S-25 bat detector, coupled
minimise input from the investigators, making this study moréo a National Instruments PCMCIA format analogue-to-
objective than those requiring measurements by handligital (A/D) conversion board (model Al-16E-4; National
Discriminant function analysis and back-propagation neurdnstruments, Austin, TX, USA), 5s sequences of sound were
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Table 1.Species recorded in this study including the number of distinct geographic locations where recordings were made, the
number of calls recorded per species and the situation in which the bats were recorded

Number of

Common name Location calls Situation
Barbastella barbastelluéSchreber, 1774) Barbastelle 1 33 r
Eptesicus serotinuSchreber, 1774) Serotine bat 5 56 r
Myotis bechsteini{Kuhl, 1818) Bechstein’s bat 5 25 r, h
M. brandtii (Eversmann, 1845) Brandt’s bat 2 50 r,h
M. daubentoni{Kuhl, 1819) Daubenton’s bat 3 24 r, h
M. mystacinugKuhl, 1819) Whiskered bat 4 37 r, h
M. nattereri(Kuhl, 1818) Natterer’s bat 4 82 r, h
Nyctalus leisler(Kuhl, 1818) Leisler’s bat 1 80 r
N. noctula(Schreber, 1774) Noctule bat 3 90 r, f
Pipistrellus pipistrellugSchreber, 1774) Common (45 kHz) pipistrelle 8 36 r
P. pygmaeugél_each, 1825) Soprano (55 kHz) pipistrelle 3 96 r
Plecotus auritugLinnaeus, 1758) Brown long-eared bat 4 32 r, h
Rhinolophus ferrumequinu(®chreber, 1774) Greater horseshoe bat 2 24 r
R. hipposidero¢Bechstein, 1800) Lesser horseshoe bat 3 33 r
Total 698

r, flying away from a roost; h, on release from the hand; f, foraging sites.

acquired. Calls were digitised, when the system was triggerdtle call at 12us and 112is intervals when digitised at
by the user, using BatSound, at a sampling rate of 500 kH#241kHz or 500 kHz respectively (Fig. 1). Each reconstruction
with 12-bit precision. was checked by eye to ensure that there were no obvious errors.
Using BatSound, we chose for further analysis a single callhe start and end frequencies (F-start and F-end respectively)
that had the highest signal-to-noise ratio without beingf the call were taken to be the first and last values from the
overloaded from each sequence. Calls were transferred teconstructed call respectively. The frequency at half the
MatLab v5.3 (Mathworks, Natick, MA, USA) for further duration (F-centre) was also taken from the reconstruction.
analysis. A mid-pass (10-150kHz) tenth-order Butterworth With the exception of the calls &. auritus the harmonic
filter was applied to the signals and the envelope of eachkith most energy within each call was always measured. At
created using a Hilbert transform of the waveform. Envelopethe beginning of &I. aurituscall, most energy is usually in
were subsequently scaled between 0 and 1. Using the pothie fundamental, after which it can switch to the second
where the envelope rose above and then subsequently dropgeadmonic. For the sake of consistency in our measurements,
below an arbitrary threshold value, the call was removed frorwe chose to measure all variables, except the frequency with
the rest of the signal. All calls were extracted from the
background noise using the same arbitrary threshold valt o4

(0.003). Call duration (Durtn) was defined as the duration ¢ —— Reconstructed call
the extracted waveform. The frequency with most energy (| == Exponential-2 function
80 —— Hyperbolic function

maxE) was measured from a power spectrum. As the duratic
of calls varied both inter- and intraspecifically, the number o =
points used for the Fast Fourier Transformation (FFT) was st T 701
to be the closest power of two larger than the total number « 3,
points in the call. A Hamming window was applied to the call g
before the FFT was calculated. The resulting power spectru % 60+
was smoothed to 1024 points, allowing the frequency witl T
most energy from calls of different durations to be comparec
giving a frequency resolution of 430 Hz and 488 Hz for signal:
digitised at 441kHz and 500kHz respectively. No call was
shorter than 1024 points. The frequency-time course of tt 40
harmonic with most energy was recreated by dividing the ca

into a series of 56-point segments. We calculated powe
spectra for each segment (after the application of a Hammirgig 1. Reconstruction of the frequency-time course of a call
window) using a zero-padded 1024-point FFT, and th¢ecorded from Pipistrellus pygmaeus Also shown are the
frequency with most energy was calculated within each poweapproximations to the true frequency—time course by exponential-2
spectrum. This gave a frequengrsustime reconstruction of and hyperbolic functions

50

Time (Ms)
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most energy, from the fundamental P auritus calls. The The power-3 function is the most flexible used in this study
frequency with most energy was measured across alind can approximate linear, power-1, logarithmic and
harmonics for all species. parabolic functions.

Modelling of frequency sweeps Design and training of the neural network

We fitted eight mathematical curve functions to the To test the ability of ANNs to classify echolocation calls to
reconstructed frequency-time course of calls using a norspecies level, we trained multilayer perceptrons using a back-
linear regression procedure in MatLab's statistics toolboyropagation algorithm with momentum (e.g. Haykin, 1999;
(version 2.2; Fig.1). Three of these curves (hyperbolicRumelhart et al., 1986), epoch training and adaptive learning
logarithmic, exponential-1) are the same as those used lfyogl et al., 1988) using the neural network toolbox (toolbox
Masters et al. (1991) and Parsons et al. (1997). For alersion 3.01) of Matlab version 5.3.
equationd(t) is the frequency of the fundamental at tinagter We trained a number of different networks depending on the
the start of the calfp is the starting frequency &0, andfi1 is  classification task required (e.g. to genus leMgbtisonly, all
the asymptotic frequency approached tabecomes large. species). In all cases, the inputs to the networks were the five
Wherea or c is present, they represent decay constants. Themporal and spectral call variables and eight mean-squared

linear sweep function is given by: errors (MSEs) from the curve-fitting analysis. The network
£(t) = fo - (fo - f)t 1 outputs were the species emitting the calls to be classified.
' Either one or two hidden layers were used, and the number of
the exponential-1 decay is given by: neurones in each was varied between five and 20 in steps of
f Ot five. The momentum constant was varied between 0.1 and 0.9
f(t) =fo mg , 2) in steps of 0.1. The most suitable architecture was defined as

Ofo O that giving the highest correct identification rate. Networks

were trained using 50 % of the input data set. Prior to being

the hyperbolic sweep function is given by: X . = -
split, data were randomised within each species to remove any

= fof1 3) effect of recording equipment, year of recording, recording site

B f1+ (fo— f)t2 or geographic variation in call structure. Each variable in the

R training data set was transformed by dividing through by the
and the power-1 sweep function is given by: largest value, making each vary between 0 and 1. The largest
f(t) =fo — (fo - f)t2. 4) value for each variable was also used to standardise its

) corresponding variable in the test data set. The performance of
For all four of the above functions, whépfy, the frequency  networks during training was represented by the root-mean-
sweep of the call is downwards. The exponential-2 decay E‘?quared (RMS) error of observeersusexpected outputs. To
given by: achieve reasonable performance, the training algorithm was
fo Oafy Ot O often repeated for many thousands of epochs until this RMS
f(t) = fo—af E(fo f1) EFD +(1- a)f1D (5)  error was reduced to some arbitrarily selected level (0.05
0 o0 was found to give reasonable results). After training, the
As a approache&)/fl, the call approaches a linear frequencyremaining 50% of the dataset was used to test the networks
sweep; fora>(fo/f1), the sweep is convex, and far0, the independently. The network architecture producing the highest
curvature is infinite and describes a call with a verticapverall correct identification rate was then rerun 30 times, each
frequency-modulated component followed by a constantime using different initial random weights and biases for each
frequency component. The exponential-2 function is the onlj}eurone to ensure that the highest classification rate had been
one used in this study capable of describing a constankchieved. The best-performing of these networks was used to
frequency component in a call. The logarithmic-sweegfliscriminate between calls.
function is given by:

loge(1 +at) Results

f(®) =fo = (fo = fa) loge(1 +a) ©) Description of echolocation calls and curve fits

Both B. barbastellusand N. noctulaproduce two distinct
types of call (Fig. 2) based on systematic differences in call
f(t) =fo — (1 +a)(fo — f)t + a(fo — f)t2. ) durations and spectral variables (Table 2). The two call types
were not specified prior to the discriminant function and neural
network analyses being carried out, as this would have required
subjective classification. However, they have been separated

here to facilitate a more accurate description of each species’
(L+at)c-1 ; ;
f(ty =fo—(fo—f1) ————— . (8)  vocal repertoire. The echolocation calls recorded showed a
(1+a)r-1 great deal of flexibility both within and among species

The parabolic sweep function is given by:

When a=0, the call sweep is linear, and whax0, the call
sweep is convex. The power-3 sweep function is given by:
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Fig. 2. Spectrograms of 2-3 echolocation calls recorded from the 14 species of bat to indicate variability. Type-1 andldyf-2 ca
Barbastella barbastelluandNyctalus noctulare shown. Spectrograms were created using a 512-point FFT with Hamming windowing. Gaps
between successive pulses do not indicate true interpulse intervals.
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Table 2.Summary statistics for echolocation calls recorded from free-flying bats

Duration F-start F-end F-maxE F-centre
N Locations (ms) (kHz) (kHz) (kHz) (kHz)

Barbastella barbastellus 1 21 1 2.5040.13 37.98+1.03 29.72+0.51 33.18+0.72 33.65+0.77
(24.61) (12.46) (7.87) (9.92) (10.50)

B. barbastellus 2 12 1 3.76+0.22 45.54+0.75 30.51+1.21 39.09+1.04 39.80+0.64
(20.51) (5.68) (13.76) (9.20) (5.60)

Eptesicus serotinus 56 5 6.71+0.29 61.54+0.95 28.26+0.29 33.67+0.54 35.00+0.55
(31.89) (11.58) (7.74) (11.95) (11.70)

Myotis bechsteinii 25 5 2.16+0.08 111.96+3.04 42.24+0.81 73.04+1.76 77.21+1.27
(19.05) (13.60) (9.56) (12.05) (8.20)

M. brandtii 50 2 3.84+0.11 101.05+1.21 35.82+0.43 55.21+0.87 62.38+0.98
(20.07) (8.46) (8.48) (11.13) (11.07)

M. daubentonii 24 3 2.79+0.17 88.20+1.05 36.46+1.08 54.89+0.77 59.50+1.07
(29.38) (5.85) (14.56) (6.84) (8.82)

M. mystacinus 37 4 2.36+0.09 102.68+1.95 39.93+0.84 57.58+1.26 68.80+1.65
(21.96) (11.58) (12.82) (13.35) (14.59)

M. nattereri 82 4 3.35+0.19 121.44+1.37 30.80+0.61 64.64+1.67 79.33+1.86
(50.48) (10.20) (17.95) (23.45) (21.18)

Nyctalus leisleri 80 1 7.60+0.27 58.63+1.52 28.38+0.34 31.00+0.43 32.05+0.50
(31.98) (23.25) (10.64) (12.47) (14.08)

N. noctula 1 43 3 11.53+0.43 47.19+1.29 25.50+0.34 26.92+0.38 27.51+0.42
(24.31) (17.95) (8.86) (9.36) (10.00)

N. noctula 2 47 3 13.09+0.38 31.25+0.79 21.58+0.28 21.98+3.53 22.01+0.23
(20.02) (17.30) (8.88) (6.79) (7.23)

Pipistrellus pipistrellus 36 8 4.78+0.19 77.03+2.02 46.29+0.34 46.74+0.29 47.52+0.32
(24.41) (15.75) (4.37) (3.76) (4.06)

P. pygmaeus 96 3 5.53+0.09 86.69+1.33 52.71+0.17 52.86+0.18 53.51+0.21
(15.80) (15.05) (3.11) (3.35) (3.93)

Plecotus auritus 32 4 2.12+0.09 55.14+1.19 29.91+1.04 51.96+2.29 40.65+1.61
(25.18) (12.16) (19.63) (24.92) (22.34)

Rhinolophus ferrumequinum 24 2 51.50+2.56 69.48+0.42 67.94+0.80 82.08+0.11 82.22+0.12
(24.34) (2.96) (5.80) (0.66) (0.71)

R. hipposideros 33 3 41.70+1.48 98.19+0.87 96.33+1.37 110.98+0.24 110.95+0.25
(20.35) (5.12) (8.15) (1.23) (1.28)

Values are presented as mearsse.

Values in parentheses are coefficients of variation.

N, number of calls per individual, F-start, start frequency; F-end, end frequency; F-maxE, frequency with the most energy; F-cen
frequency with the most energy at half the duration of the call.

ForB. barbastellusndN. noctula values are shown for the two distinct call types recorded for these species.

(Table 2). In general, call duration was the most variablédowest, a result mirrored by the frequency at half the duration
parameter measured, with most species having coefficients of the call (111.0kHz and 22.0kHz fBr. hipposideroandN.
variation greater than 20%. The remainder of the parametem®ctulatype-2 respectively).

were equally variable, with the exception of those measured On average, the frequency—time course of calls produced by
from the Rhinolophusspp. whose specialised method of individual Eptesicus serotinysM. brandtii, M. nattereri N.
echolocation makes their calls highly conserved. Amondeisleri andN. noctula(type-1 calls) and the calls of the two
species, mean call durations varied from 2.12 mRfaauritus  pipistrelle species were best described by the exponential-2
to 51.5ms foR. ferrumequinumThe calls oM. nattererihad  sweep function NI. nattereri equal with log; Table 3). The
the highest start frequency (121.4 kHz). Of the filyetisspp.  calls of B. barbastellus(type-1 and type-2 calls) were best
recorded, only those dfl. daubentoniistarted on average described by the logarithmic function. The parabolic function
below 100kHz. The type-2 calls df. noctulahad the lowest described the calls &fl. auritusbest, while the power-3 sweep
start frequency (31.3kHz)R. hipposiderosproduced calls function described the calls bf. bechsteiniiM. daubentonii
whose frequency with maximum energy was the highed¥l. mystacinusand N. noctula (type-2 calls) best. The
(111.0kHz), while the type-2 calls dfi. noctulawas the exponential-1, hyperbolic, linear and power-1 sweep functions
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Table 3.Average mean-squared errors for the different functions fitted to the frequency—time courses of echolocation calls

Exp-1 Exp-2 Hyper Lin Log Para Pow-1 Pow-3

Barbastella barbastellus 1~ 0.37+0.07 0.23+0.04  0.41+0.09 0.37#0.06 0.22+0.04 0.23+0.04 0.31+0.07 0.39+0.18
(82.82) (82.61) (96.07) (78.79) (84.73) (81.67) (101.72) (208.33)

B. barbastellus 2 1.09+0.41 0.37+0.10 1.46+x0.48 0.79+0.35 0.36%0.12 0.38+0.10 1.45%1.13 5.69+2.82
(131.10) (97.80) (113.50) (150.87) (113.24) (90.30) (270.45) (171.53)

Eptesicus serotinus 5.83£0.40 0.39+0.06 2.23+0.22 11.51+0.70 1.02+0.10 1.12+0.14 1.53+0.13 1.21+0.46
(51.43) (122.74) (75.04) (45.58) (71.90) (93.94) (65.60) (278.61)

Myotis bechsteinii 4.30£0.75 0.94+0.17 18.31+2.27 3.77+0.81 0.91+0.15 0.99+0.19 0.94+0.15 0.81+0.16
(87.49) (90.42) (61.87) (107.89) (84.46) (95.07) (78.83) (94.70)

M. brandtii 3.40£1.30 1.00+0.14 8.60+1.94 10.31+0.99 1.20+0.24 1.13+0.10 1.58+0.16 1.61+0.32
(270.86) (97.15) (159.77) (67.94) (139.93) (60.86) (69.23) (135.39)

M. daubentonii 2.45%0.27 1.62+0.21 4.34+0.74 558+0.54 1.46+0.21 1.93+0.23 1.53+0.21 1.41+0.21
(53.49) (64.12) (83.28) (47.63) (70.54) (58.18) (67.13) (72.46)

M. mystacinus 3.18+0.71 1.36+0.19 10.04+1.82 6.09+0.75 1.37+0.19 1.45+0.20 1.52+0.23 1.05+0.11
(135.20) (83.43) (110.46) (75.14) (85.62) (82.75) (91.80) (58.11)

M. nattereri 27.61+3.02 1.90+0.15 68.38+5.90 10.50+0.92 1.90+0.15 2.15+0.19 1.95#0.15 2.03£0.32
(99.17) (73.55) (78.10) (79.73) (74.02) (80.67) (70.95) (140.85)

Nyctalus leisleri 9.89+0.66 0.38+0.03 5.83+0.41 14.46+0.97 1.36%x0.10 2.78+0.22 1.49+0.11 4.16+2.10
(59.57) (62.11) (63.23) (59.86) (65.39) (70.99) (63.95) (446.05)

N. noctula 1 5.48+0.54 0.38+0.04 3.69+0.33  7.31+0.76 0.67+0.07 1.68+0.17 0.72+0.07 2.21+0.92
(64.23) (63.99) (59.29) (67.87) (72.92) (68.19) (66.02) (273.21)

N. noctula 2 1.36+x0.21 0.37+0.03 1.23+0.18 1.48+0.24 0.39+0.04 0.66+0.07 0.39+0.04 0.27+0.03
(104.63) (57.94) (97.50) (110.26) (68.29) (72.53) (68.79) (70.02)

Pipistrellus pipistrellus 21.83+2.51 0.31+0.04 17.27+1.77 25.89+3.16 4.87+0.65 6.03x0.77 4.93+0.65 16.23+6.54
(68.95) (86.25) (61.55) (73.30) (79.72) (76.45) (79.67) (241.94)

P. pygmaeus 27.87¥1.69 0.42+0.07 22.86+1.28 32.50+2.16 6.93+0.48 7.75x0.50 7.01+0.49 20.86+4.81
(59.58) (172.48) (55.04) (65.06) (67.63) (62.59) (67.95) (222.13)

Plecotus auritus 5.15+1.81 2.69+1.83 5.26+2.85 8.25+2.86 3.14+#2.03 2.53+1.53 3.34+2.09 3.79%£2.30
(199.24) (385.59) (305.96) (196.31) (366.05) (342.58) (353.82) (338.68)

Values are presented as mearsse.

Values in parentheses are coefficients of variation.

Exp-1, exponential-1; Exp-2, exponential-2; Hyper, hyperbolic; Lin, linear; Log, logarithmic; Para, parabolic; Pow-1, peow+3l;
power-3.

ForB. barbastellusndN. noctula values are shown for the two distinct call types recorded for these species.

on average did not provide the best description of theonformed to the multivariate normal distribution (Box’s
frequency—time course of any species’ calls. M-test, F=17.065, P<0.0001). However, DFA is relatively
Large intraspecific variation in MSEs was apparent, witlrobust to deviations from normality, which are likely to
coefficients of variation for some species being nearly 400 %educe performance slightly (Dillon and Goldstein, 1984).
(Table 3). This high degree of variability was often caused b¥xamination of the covariance matrices showed that they were
poor fits of one or more functions to only one or two calls frormheterogeneous and that transformation of the data did not
each species. Expressing the function best describing the calésluce heterogeneity, nor did it reduce deviation of the data
of a species based on average MSEs may thus be misleadifrgpm normality. Therefore, quadratic discriminant functions
Therefore, we also calculated the number of calls bestere calculated in all analyses (Dillon and Goldstein, 1984)
described by each function with a species (Table 4). Thasing untransformed data. Cross-validation was used in all
majority of calls produced biyl. brandtii, M. nattereriandN. DFAs.
leisleri and the type-1 calls produced By barbastellusare Discriminant function analysis of the 13 variables measured
now best described by the power-3 function, and the calls dfom 641 calls from 12 species gave an overall correct
M. bechsteiniiare almost equally well described by the classification rate of 79 % (Fig. 3A). Random classification of
parabolic and power-1 sweep functions. the data would produce a correct classification rate of 89%.
Multivariate analysis of variance (MANOVA) showed that
Statistical and discriminant function analysis — with shape discrimination of the data was significantly different from
information random (Wilk's A=0.00029, F=59.105, P<0.001) and that
None of the 13 variables measured from echolocation cal®4 % of the variation was explained by the first discriminant
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most important (Table 5). The MSE for the eight curve
functions fitted to the calls were the least important for
discriminating among species.

DFA was also used to classify calls to genus level (Fig. 3B).
The overall correct classification rate of calls, which was

A

=
Q
=)

(0]
o
I

significantly different from random (MANOVA, Wilks’
A=0.0030, F=109.316, P<0.001), was 94% with the calls
recorded fromMyotis spp. unambiguously identified. The first
discriminant function accounted for 62 % of the variation in the
data, while the first five functions accounted for 100 % of the
variation. The calls fronPipistrellus spp. andNyctalusspp.
had correct classification rates of over 90%. Of the three
monospecific genera in this study, only the call$lefcotus
NG é@\ sp. were correctly classified at a rate of less than 80 %. Correct
> o identification rates for the monospecific genera were very
similar to those achieved by the species-level discriminant
function analysis. Only one call recorded frBipistrellusspp.
mmm \\ith shape was incorrectly identified, being classified as belonging to
1 Without shape Nyctalusspp. Similarly, two calls emitted fromdyctalusspp.
were incorrectly identified as belongingRapistrellusspp. In
B both these cases, misidentification appeared to be due to
100+ similarities in MSE values rather than temporal and spectral
features. Temporal and spectral features were the most
important for discriminating among genera (Table 5). The
relative importance of the temporal and spectral measurements
was the same as for the all-species DFA with the exception of
F-centre, which was the second most important in the genus-
level DFA (compared with the third most important in the all-
species DFA).

DFA was used to classify calls within each of the
multispecific genera. Overall, correct classification rates of
72%, 82% and 91 % were achieved Ktyotis spp.,Nyctalus
) & @‘? £ spp. andPipistrellusspp. respectively (Table 6), all of which
<& N & ‘é«é‘ \QS’O @é were significantly different from randorviyotis spp., Wilks’

& NP A=0.08250, F=12.634, P<0.001: Nyctalus spp., Wilks’
A=0.61789, F=4.329, P<0.001; Pipistrellus spp., Wilks’
Fig. 3. Correct identification rates from discriminant function =0.21194,F=32.893,P<0.001). For theMyotis spp., 100 %

analysis (DFA) with shape data included or not included in the dat8f the variation in the data was explained by the first four
sets. Analyses were carried out at (A) species and (B) genus level discriminant functions, while all the variation in both the

Nyctalusspp. andPipistrellusspp. data was explained by their
function. The first three discriminant functions accounted forespective first discriminant functions. Correct identification
99% of the variation in the data. The highest correctates for individual Myotis spp. were identical to those
discrimination rate was achieved fiot. nattererj with 96%  achieved by the all-species DFA. This result is not surprising
of recorded calls correctly identified. Identification rateRiof because calls produced llyotisspp. were only ever confused
pygmaeusgalls were also high, with 92 % correctly identified. with the calls of otheMyotis spp. by the all-species DFA.
Four speciesH. serotinusN. noctula B. barbastellusandPi. However, the correct classification rates achieved by the
pygmaeup had over 80% of their recorded calls identifiedwithin-genera DFA for calls emitted BY. leisleri N. noctula
correctly. With the exception ofPl. auritus (correct (Table 6),Pi. pipistrellusand Pi. pygmaeugqTable 6) were
identification rate 72%), all the remaining species, four okqual to or higher than those achieved by the all-species DFA.
which belong to the genuldyotis had less than 70 % of their MSE values were more important in discriminating between
calls identified correctly. The calls M. mystacinusvere the the calls of Myotis spp. than those oNyctalus spp. and
most difficult to classify, with only 43 % correctly identified. Pipistrellus spp., with hyperbolic and exponential-1 MSEs

Wilks’ A statistics were used to determine the contributiorbeing the third and fourth most important respectively
each variable made to the ability of DFA to classify calls. O{Table 5). The five temporal and spectral features were the
the 13 variables measured, the five most important wenmost important for distinguishing between calls recorded from
temporal and spectral characteristics, with F-end being thyctalusspp. andPipistrellusspp. F-start, F-maxE and F-end

Correct identification rate (%)
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Table 4. Number of echolocation calls from each species categorised by best function

Exp-1 Exp-2 Hyper Lin Log Para Pow-1 Pow-3
Barbastella barbastellus 1 0 (0) 1(5) 0 (0) 0 (0) 3(14) 2 (10) 7(33) 8 (38)
B. barbastellus 2 0(0) 0 (0) 0 (0) 0(0) 8 (67) 1(8) 2(17) 1(8)
Eptesicus serotinus 0(0) 30 (54) 0(0) 0 (0) 1(2) 7 (13) 0(0) 18 (32)
Myotis bechsteinii 0(0) 0(0) 0 (0) 0(0) 0(0) 10 (40) 9 (36) 6 (24)
M. brandtii 0(0) 7 (14) 0 (0) 0 (0) 0 (0) 20 (40) 24 21 (42)
M. daubentonii 0(0) 1(4) 0(0) 0 (0) 0 (0) 5(21) 5(21) 13 (54)
M. mystacinus 0(0) 3(8) 0(0) 0 (0) 0 (0) 11 (30) 9 (24) 14 (38)
M. nattereri 0 (0) 4 (5) 0 (0) 0(0) 10 (12) 11 (13) 22 (27) 35 (43)
Nyctalus leisleri 0(0) 28 (35) 0 (0) 0(0) 0(0) 5 (6) 1(1) 46 (58)
N. noctula 1 0(0) 19 (44) 0 (0) 0 (0) 4(9) 0 (0) 1(2) 19 (44)
N. noctula 2 0(0) 4(9) 0(0) 0 (0) 0 (0) 0(0) 12 (26) 31 (66)
Pipistrellus pipistrellus 0 (0) 21 (58) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 15 (42)
P. pygmaeus 0(0) 75 (78) 0 (0) 0 (0) 0 (0) 1(1) 0(0) 20 (21)
Plecotus auritus 0(0) 8 (25) 0 (0) 0(0) 2 (6) 13 (41) 5 (16) 4 (13)
Total 0(0) 201 (31) 0 (0) 0(0) 28 (4) 86 (13) 75 (12) 251 (39)

Best function is defined as the curve function whose mean-squared error is the lowest for each call.

Values in parentheses are the numbers of best function calls expressed as a percentage of the total number of calsder that sp

Exp-1, exponential-1; Exp-2, exponential-2; Hyper, hyperbolic; Lin, linear; Log, logarithmic; Para, parabolic; Pow-1, poowe+3l;
power-3.

ForB. barbastellusndN. noctula values are shown for the two distinct call types recorded for these species.

were the most important variables for distinguishing betweenlassification would give an identification rate of 8.3 %. Perfect
the calls ofMyotis spp., Nyctalusspp. andPipistrellusspp.  classification was achieved Br barbastellusind both species
respectively. of pipistrelle. Correct identification rates for calls produced by

Statistical and discriminant function analysis — without shape
information

To test the contribution made by the inclusion of signha

shape to the ability of recorded calls to be classified, DFA

Table 5.Relative importance of each call parameter in
discriminating between the echolocation calls of different
species by discriminant function analysis (DFA)

were carried out using only temporal and spectra Wilks” A

characteristics measured from individual calls. The overa All Myotis Nyctalus Pipistrellus
correct classification rate for all species was higher than wheVariable species Genus  spp. spp. spp.
shape information was included (81 %; Fig. 3). Multivariater_qq 0126 0213 0507 0.585 0.270
analysis of variance (MANOVA) showed that discrimination g_giart 0139 0221 0495 0599 0.897
of the data was significantly different from random (Wilks’ E-centre 0.147 0214 0.689 0.539 0.370
A=0.0021,F=146.031,P<0.001). Correct identification rates F-maxE 0.200 0.262 0.763 0.527 0.293
for individual species were higher when shape information waDuration 0.221 0.345 0.791 0.550 0.890
removed for all species except serotinusM. nattereriand ~ Hyperbolic 0494 0812 0584  0.748 0.959
N. noctula At the genus level, the overall correct classificatior MSES

rate was reduced (93 %) when shape information was removtinear MSEs  0.571  0.620  0.865  0.641 0.980
despite all individual genera excefptesicusand Nyctalus EX&(;”Eesm'al'l 0596 0.779 0686 0672 0.973
havmg hlgh_er cprrect |den_t|f|<_:z_it|on rate_s. MANOVA ShowedParabolic 0624 0649 0.885 0.778 0.975
that discrimination was significantly different from random MSES

(Wilks’ A=0.01402, F=202.124,P<0.001). The first three Logarithmic

L - : 0.702 0.718 0.936 0.723 0.959
discriminant functions from the all-species and genus-leve psgs

analyses described 98 % of the variation in the data. Power-1 MSEs 0.722 0.738 0.938 0.701 0.96

o o ) Power-3 MSEs 0.907 0.912  0.989 0.986 0.996

Classification of calls by artificial neural networks — with  Exponential-2  0.922 0931 0.896  1.000 0.994
shape information MSEs

Back-propagation networks were trained using all 1:
variables measured from 12 species. The best architectt The lower the value for WilksX, the more important the variable.
consisted of a network with two hidden layers, each containin F-end. end frequency; F-start, start frequency; F-centre, frequency
20 neurones. Using this architecture, an overall correcVith the most energy at half the duration of the cell; F-maxE,
classification rate of 87% was achieved (Fig. 4A). Randonfrequency with most energy; MSE, mean-squared error.
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Fig. 4. Correct identification rates for artificial neural networks

(ANNSs) trained to identify calls with shape data included or noFig. 5. A comparison of correct identification rates achieved by

included in the training and testing data sets. Networks were trainartificial neural networks (ANNs) and discriminant function analyses

to identify calls to (A) species and (B) genus level. (DFAs) with shape information. Comparisons are made at (A)
species and (B) genus level.

M. brandtiiandM. nattereriwere equal to or greater than 90 %,
while correct identification rates f&. serotinusN. leisleri N.  classified to the species level by the previous network. The
noctula and Pl. auritus were greater than 80%. Correct identification rates for the other two genera represented by only
identification rates for calls produced B daubentonii M. one species increased by 5 % Rir auritus but decreased by
bechsteiniiand M. mystacinuswere 75%, 67% and 56% 6% for B. barbastellus compared with results from the
respectively. For the majority of species, correct identificatiometwork trained to discriminate between all species. For all
of recorded calls was equal to or higher than that using thgenera, correct identification of recorded calls was equal to or
equivalent DFA (Fig. 5A). The only exceptions weke  higher than that achieved by the equivalent DFA (Fig. 5B).
serotinus M. nattereriandN. noctula Three genus-specific networks were trained to classify calls
A network whose architecture consisted of one hidden laydrom bats within each of the genera containing multiple
containing 20 neurones was trained to classify calls to gengpecies. The first network, trained to classify calls produced
level (Fig. 4B). The overall correct identification rate for thisonly by Myotis spp., consisted of two hidden layers, each
network was 96 %. Calls from species within the geMgratis  containing 20 neurones. The overall successful classification
andPipistrelluswere identified without error. Only calls from rate achieved by this network was 82 % (Table 7). The calls of
Eptesicusp. had a correct identification rate of less than 90 %M. nattereriwere classified with a success rate of 90 %. Calls
However, the identification rate was 3% higher than for callsvere confused with all those of all othdyotisspp. excepM.
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Table 6.Results from three separate discriminant analyses used to classify the calls of bats belonging to tihéygéisera

Nyctalusor Pipistrellus

True group

Classified as M. bechsteinii M. brandtii M. daubentonii M. mystacinus M. nattereri
GenusMyotis

M. bechsteinii 14 2 1 8 0

M. brandtii 1 34 3 3 1

M. daubentonii 0 3 13 7 0

M. mystacinus 4 6 7 16 2

M. nattereri 6 5 0 3 79

TotalN 25 50 24 37 82

N correct 14 34 13 16 79

% Correct 56 68 54 43 96

True group True group
N. leisleri N. noctula P. pipistrellus  P. pygmaeus

GenusNyctalus GenusPipistrellus

N. leisleri 60 10 P. pipistrellus 31 7

N. noctula 20 80 P. pygmaeus 5 89

TotalN 80 90 TotalN 36 96

N correct 60 80 N correct 31 89

% Correct 75 89 % Correct 86 93

The overall correct classification rates were 72 %, 82 % and 91 % respectively.

Table 7.Results from three neural networks trained to categorise the calls of bats belonging to theMyares;aNyctalusor

Pipistrellus
True group

Classified as M. bechsteinii M. brandtii M. daubentonii M. mystacinus M. nattereri
GenusMyotis

M. bechsteinii 9 2 0 1 2

M. brandtii 0 21 0 1 1

M. daubentonii 1 1 9 1 0

M. mystacinus 2 1 3 14 1

M. nattereri 0 0 0 1 37

TotalN 12 25 12 18 41

N correct 9 21 9 14 41

% Correct 75 84 75 78 90

True group True group
N. leisleri N. noctula P. pipistrellus  P. pygmaeus

GenusNyctalus GenusPipistrellus

N. leisleri 39 1 P. pipistrellus 18 0

N. noctula 1 43 P. pygmaeus 0 48

TotalN 40 44 TotalN 18 48

N correct 39 43 N correct 18 48

% Correct 98 98 % Correct 100 100

daubentonii Of calls recorded fronM. brandtii, 84 % were
correctly classified. The calls &fl. brandtii were confused
with those of all the othévlyotisspp. excepM. nattereri The
correct identification rate of calls recorded frifnmystacinus
was 78 %, while 75% of calls recorded frdvh bechsteinii
and M. daubentonii were correctly identified. With the

exception of calls recorded frorkl. brandtii the correct
identification rate of calls recorded frdvtyotisspp. using this
network was equal to or higher than the correct identification
rate achieved by the all-species network.

The second genus-specific network was trained to identify
calls recorded fronN. leisleriand N. noctula(Table 7). The
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best network architecture consisted of two hidden layers, eadbject (Kalko, 1995; Masters et al., 1991; Simmons et al.,
containing 10 neurones each. Only one call from each speci&879). Morphology also influences call design and can cause
was misidentified, giving correct identification rates for eachgonvergence in call design between morphologically similar
and an overall correct identification rate, of 98%. A thirdspecies. Call frequency correlates negatively with forearm
network, trained to identify the calls froRi. pipistrellusand length and body mass, while call duration scales positively
Pi. pygmaeusconsisted of one hidden layer containing fivewith body mass in several genera (Bogdanowicz et al., 1999;
neurones. This network correctly identified all the callsJones, 1996, 1999). Age has also been shown to have an effect
recorded from both species (Table 7). The correcon the echolocation calls of bats independent of morphology
identification rate of calls recorded frohyctalusspp. and (Jones et al., 1992; Jones and Kokurewicz, 1994; Masters et
Pipistrellusspp. was equal to or higher than that achieved bgl., 1995). The constraints on signal design we have
the all-species network. mentioned do not mean, however, that all bats must produce
the same calls. For example, bdth bechsteiniiand PI.
Classification of calls by artificial neural network — no shape auritus prefer wooded areas for foraging, glean prey from
information surfaces and include a significant proportion of tympanate
A neural network was trained to identify calls recorded from_epidoptera in their diet (Entwistle et al., 1996; Vaughan,
12 species of bat using only the five temporal and spectrdB97). HoweverPl. auritus produces calls with a different
features, i.e. without the MSE data. The best networklesign from those oM. bechsteinii At the same time, the
architecture, which consisted of one hidden layer containingresent study and many others have shown that some closely
10 neurones, achieved an overall correct identification rate oélated species use very similar call designs, perhaps because
85% (Fig. 4A). Identification rates were lower compared withof phylogenetic constraints. The most obvious example of this
the network trained using shape information Eorserotinus  occurs in the calls from members the gelMystis found in
M. brandtii, N. leisleriandN. noctula However, the removal Britain.
of shape information increased the identification ratedvfor The majority of temporal and spectral measurements taken
bechsteinii M. daubentonii M. mystacinusM. nattereriand  from calls in the present study agree well with those reported
Pl. auritus For the majority of species, correct identification previously in the literature (Ahlén, 1981; Britton and Jones,
of recorded calls was equal to or higher than with thed999; Jensen and Miller, 1999; Jones and Rayner, 1989;
equivalent DFA. The only exception wd&s serotinus A Jones, 1995; Kalko and Schnitzler, 1989; Konstantinov and
second network, trained to classify calls to genus level onlyylakarov, 1981; Rydell et al., 1999; Vaughan et al., 1997,
had a best network architecture consisting of two hidden layel&aters et al., 1995; Zingg, 1988, 1990). Where differences
each containing 20 neurones. This network was equal to dio occur, they are usually small and can be easily explained
better at discriminating calls from individual genera than thdoy plasticity in call design. Average values for measurements
equivalent network trained and tested using shape informatidaken fromMyotis spp. match those from the literature less
(Fig. 4B), with four of the six genera having correctwell and are difficult to explain in terms of acoustic clutter,
identification rates of 100%. Because of the low correcforaging ecology or morphological scaling. In particular,
identification rate achieved for calls froEptesicussp, the  frequency measurements (but not F-start and bandwidth)
overall correct identification rate was lower than when shapappear to be higher than those previously reported. The
information was included. For all but one of the generdifferences in mean values are due to the influence of
(Eptesicuy, correct identification of recorded calls was equalmeasurements taken from calls recorded after bats had been
to or higher than the equivalent DFA. released from the hand. Although call durations are not
excessively short, changes in the structure of calls recorded
) . in this situation resemble those seen in other species,
Discussion including Myotis spp., when flying in enclosed rooms or on
Plasticity in echolocation call design release from the hand (Britton and Jones, 1999; Parsons,
The demands of certain acoustic tasks have causd®98; Waters and Jones, 1995). However, both the DFAs and
convergence in signal design within and among species of b#NNs were exposed to calls froMyotis spp. recorded in
As acoustic clutter increases, calls become shorter and mdiree flight and on release from the hand, and calls from both
broadband, and pulse repetition rate increases (e.g. Kalko asiduations were misclassified.
Schnitzler, 1993; Rydell, 1990). Bats using echolocation calls Previous studies have reported the use of alternating call
with a low duty cycle must make these changes to avoitypes by bothN. noctulaand B. barbastellus When high
overlap between outgoing pulses and echoes from objects @bove the ground\. noctulaalternates between long, almost
close proximity and to resolve the exact position of the cluttereonstant-frequency calls and shorter more frequency-
producing background (Jensen and Miller, 1999; Kalko andnodulated calls (Ahlén, 1981; Zbinden, 1989). The use of a
Schnitzler, 1989, 1993; Simmons and Stein, 1980). Calbng narrowband call when flying in very open environments
parameters vary similarly as a bat approaches a target, excegiuld allow bats to detect objects such as large insects at
that, after an initial increase in signal bandwidth, calls becomegreater distances and may also allow them to maintain acoustic
progressively less broadband with increasing proximity to theontact with the ground, thus providing an important reference
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point. The more frequency-modulated call would provide Discriminant analysiversusneural networks for species
detailed information on the bats’ surroundings and allow the identification
detection of prey items such as small dipterans that have beerDFA has been widely used to classify the species or
shown to be an important dietary component (Jones, 1995hdividual bat producing an echolocation call. In most studies,
The long narrowband call may not be used when bats fly clogmth temporal and spectral features have been measured from
to the ground as this situation represents a high-cluttezither time-expanded or frequency-divided signals. Obrist
environment (Jensen and Miller, 1999). (1995) and Vaughan et al. (1997) analysed time-expanded calls
The function of the two alternating call types Bv  and obtained correct identification rates varying from 12 to
barbastelluss less clear. Ahlén (1981) analysed echolocatior®7 %. Zingg (1990), analyzing frequency-divided signals,
calls recorded indoors and outside and noted two pulse typesshieved correct classification rates between 72% and 99 %
emitted alternately, the descriptions of which match our type-Lance et al. (1996) also analysed frequency-divided calls from
and type-2 calls. Konstantinov and Makarov (1981) describehdividuals on release from the hand, not during free flight. The
a slightly convex frequency-modulated sweep similar inmresults of their study showed that only two spedgsistrellus
structure to our type-2 calls, but sweeping down to a lowesubflavusandLasiurus seminolysould be correctly identified
frequency, with a greater bandwidth. A neuronal audiograrwith a confidence greater than 90 %. For the other five species,
showed that hearing was most sensitive in the frequency rangerrect identification rates were all below 50%. Krusic and
between 20 and 30kHz (Konstantinov and Makarov, 1981Neefus (1996) noted particular problems in identifying the
Although the calls they describe fall within this range, neithefrequency-divided calls oMyotis spp. Although they could
the calls we recorded nor those of Ahlén (1981) do. Ouidentify all honMyotis species with an accuracy of 100 %,
recordings show that type-2 calls are of much lower amplitudelentification rates foMyotisspp. varied between 42 and 87 %.
than type-1 calls, a phenomenon also noted by Ahlén (1981 owever, at the genus level, identificationMyfotis spp. was
who also recorded sequences in which bats emitted only loypossible with an accuracy of 97 %.
amplitude calls. In all our sequences, bats produced only type-Neural networks have been used in a variety of
1 calls or alternated between type-1 and type-2 calls. Howeverlassification tasks in biological sonar research (e.g. Au,
given the recording situation (near a tree roost), it is unlikelyt994; Au et al., 1995; Deecke et al., 1999; Dror et al., 1995;
that bats were actively foraging, and the function of alternatiniylurray et al., 1998; Wotton and Jenison, 1997). Burnett and

call types remains unclear. Masters (1999) used ANNs to identify bats from their
_ echolocation calls. They used a back-propagation network
Shape of echolocation calls and self-organising map to classify the echolocation calls of

Masters et al. (1991) and Parsons et al. (1997) both uséwividual E. fuscus The network was able to identify 50 %
iterative curve-fitting to describe the frequency—time coursef individuals correctly, the same success rate as that
of bat echolocation calls relative to predefined curveachieved by a DFA. The results obtained from the self-
functions. However, the present study is the first to includerganising map increased as more bats were included in the
this information for species identification. It is clear fromanalysis. Parsons (2000) also used a back-propagation
temporal and spectral measurements and from the results métwork to classify the calls of two species of bat in New
the curve-fitting analysis that the structure of calls is highlZealand. Time-expanded calls were easily identified but
variable. In general, the more flexible the function, in term$eterodyned calls were not. The classification task required
of its ability to change its rate of frequency modulation, theéby our networks is far more complex.
better it was at describing calls. The inclusion of shape To classify calls to species level using a single analysis,
information degraded the ability of DFA to classify calls given the number of species in the study and the number of
correctly. Examination of\ statistics consistently showed variables measured per call, is not a trivial task, especially
that the MSE values from the curve functions were the leagfiven the highly variable nature of the data. By using a
suitable for discriminating among groups. Their inclusion inhierarchical classification system, in which calls were
the DFA may, therefore, have made the task of constructingassified to genus and species level by separate functions or
effective discriminant functions more difficult by acting asnetworks, it was thought that the ability of both DFAs and
noise, thus obscuring the true signal in the data. The inclusiochNNs to classify species correctly would improve. In the
of shape information had a mixed effect on the classificationase of the DFA, the improvement was only small, with
of calls, at the genus and species level, by the ANNs. Thelassification rates oN. leisleri increasing by the greatest
size of the networks required to achieve the best results wamount. The classification rates of the other species from
larger when shape information was included, indicating thatultispecific genera either stayed the same or increased
the task of classifying the data was more complicatedslightly. Identification rates foMyotis spp. did not improve
Unfortunately, it is much more difficult to examine ANNs under the hierarchical system because calls were only ever
because of their distributed form of non-linearity and highmisclassified as belonging to othdyotis spp. Unexpectedly,
connectivity. The use of hidden layers also makes it difficulthe correct classification rates #Br barbastellusg. serotinus
to visualise the learning process. ANNs essentially represeand PI. auritus decreased when classifications were made to
a ‘black box’, and this is one of their major deficiencies. genus level rather than species level. It is clear that the success
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of a hierarchical classification system of DFAs is dependeriat will be easily discriminated from those of other species.

on the species to be analysed and the nature of amjowever, providing that an adequate acoustic inventory is
misclassifications. The use of hierarchical ANNs was mucleonstructed for a species, that the call variables that best
more effective. ldentification rates increased or stayed theeparate species are measured and that the technique best able
same for all species except two. This highlights the power db deal with the variability inherent to the data is used, many
ANNSs because the pattern of misclassifications from the albf the calls can be identified unambiguously.

species analysis was very similar to that of the all-species DFA.

At every systematic level, the ANNs outperformed their We would like to thank Arjan Boonman, Rob Houston,
equivalent DFA. DFA uses series of functions that besSteve Rossiter, Linda Teagle, Keith Jackson, Henry Schofield,
separate the groups and then classifies each data point in tugh Davidson-Watts, Anthea Romanos, Bob Howard, Helen
However, the neural network we employed in this study useWells and Lars Pettersson for their assistance with this
an error back-propagation algorithm (Rumelhart et al., 1986roject, the many roost owners that allowed us to record on or
based on the error-correction learning rule. Error backnear their properties and two anonymous referees for their
propagation learning consists of two passes through thgseful comments. Financial support for this study was
different layers of the network: a forward pass and @rovided by the New Zealand Foundation for Research,
backward pass. In the forward pass, inputs are presented $eience and Technology and The Royal Society. All captures
the network and a signal passes through the various layekgere carried out under licence from English Nature.
resulting in a set of actual responses from the network.

During the forward pass, the synaptic weights of the neurones

in the network are fixed. During the backward pass, these References

synaptic weights are adjusted to make the actual response gHién, 1. (1981).Identification of Scandinavian Bats by their Sounds
the network match the desired response. The use of a networkuppsala: The Swedish University of Agricultural Sciences,
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