Supplemental Data Appendix 1A. ANOVA table used to calculate the repeatability values and their upper and lower 95% confidence limits for each of the components of the cyclic patterns, as well as comparable components across all three of the cyclic patterns, metabolic rate, frequency and body mass | | Source of | | | | | | | Lower confidence | Upper confidence | |---------------------------------|----------------------------|----------|---|---|---------|------------------------|------|---|------------------| | Components | variation | d.f. | SS | MS | F-ratio | P | r | limit | limit | | DGC volume | | | _ | | | | | | | | C-period $[log_{10}(+2)]$ | Among groups | 8 | 1.01×10^{-7} | 1.26×10^{-8} | 2.29 | 0.03 | 0.16 | 0.01 | 0.47 | | | Within groups | 53 | 2.92×10^{-7} | 5.51×10^{-9} | | | | | | | E : 1/1 | Total | 61 | 3.93×10 ⁻⁷ | 0.54 | 5 OF | 5.50 10.5 | 0.40 | 0.10 | 0.70 | | F-period (log ₁₀) | Among groups | 8 | 4.32 | 0.54 | 5.37 | 5.78×10^{-5} | 0.40 | 0.19 | 0.70 | | | Within groups
Total | 53 | 5.33
9.65 | 0.10 | | | | | | | O-period (log ₁₀) | Among groups | 61
8 | 9.65
1.76 | 0.22 | 13.13 | 3.2×10 ⁻¹⁰ | 0.65 | 0.44 | 0.85 | | O-period (log10) | Within groups | 53 | 0.89 | 0.22 | 13.13 | 3.2×10 · | 0.03 | 0.44 | 0.65 | | | Total | 61 | 2.65 | 0.02 | | | | | | | DGC duration | 101111 | 01 | 2.03 | | | | | | | | C-period | Among groups | 8 | 1.58×10^{6} | 1.97×10^{5} | 2.49 | 0.02 | 0.18 | 0.03 | 0.50 | | C-periou | Within groups | 53 | 4.21×10^6 | 7.94×10^4 | 2.49 | 0.02 | 0.16 | 0.03 | 0.50 | | | Total | 61 | 5.79×10^6 | 7.94×10 | | | | | | | F-period | Among groups | 8 | 2.19×10^6 | 2.74×10^{5} | 6.92 | 3.34×10^{-6} | 0.47 | 0.26 | 0.75 | | r period | Within groups | 53 | 2.09×10^{6} | 3.95×10^4 | 0.72 | 3.3 1/10 | 0.17 | 0.20 | 0.75 | | | Total | 61 | 4.28×10^6 | 3.557110 | | | | | | | O-period (log ₁₀) | Among groups | 8 | 0.94 | 0.12 | 6.77 | 4.41×10^{-6} | 0.47 | 0.25 | 0.75 | | 1 (210) | Within groups | 53 | 0.92 | 0.02 | | | | | | | | Total | 61 | 1.86 | | | | | | | | DGC emission rate | | | | | | | | | | | C-period | Among groups | 8 | 1.42×10^{-8} | 1.78×10^{-9} | 7.38 | 1.52×10^{-6} | 0.49 | 0.27 | 0.76 | | - F | Within groups | 53 | 1.28×10^{-8} | 2.41×10^{-10} | | | | | | | | Total | 61 | 2.70×10^{-8} | | | | | | | | F-period (log ₁₀) | Among groups | 8 | 1.13 | 0.14 | 5.81 | 2.55×10^{-5} | 0.42 | 0.21 | 0.71 | | | Within groups | 53 | 1.29 | 0.02 | | | | | | | | Total | 61 | 2.42 | | | | | | | | O-period | Among groups | 8 | 3.38×10^{-6} | 4.32×10^{-7} | 14.07 | 9.93×10^{-11} | 0.66 | 0.46 | 0.86 | | | Within groups | 53 | 1.59×10^{-6} | 3.01×10^{-8} | | | | | | | | Total | 61 | 4.97×10^{-6} | | | | | | | | Interburst–Burst volume | | | | | | | | | | | Burst (log ₁₀) | Among groups | 10 | 5.23 | 0.52 | 10.09 | 2.76×10^{-11} | 0.50 | 0.32 | 0.74 | | | Within groups | 93 | 4.82 | 0.05 | | | | | | | | Total | 103 | 10.05 | | | 44 | | 0 0.19 5 0.44 8 0.03 7 0.26 7 0.25 9 0.27 2 0.21 6 0.46 0 0.32 7 0.39 5 0.19 5 0.04 | | | Interburst (log ₁₀) | Among groups | 10 | 21.99 | 2.20 | 13.22 | 4.14×10^{-14} | 0.57 | 0.39 | 0.79 | | | Within groups | 93 | 15.46 | 0.17 | | | | | | | | Total | 103 | 37.45 | | | | | 0.01 0.19 0.44 0.03 0.26 0.25 0.27 0.21 0.46 0.32 0.39 0.19 0.04 | | | Interburst–Burst duration | | | 6 | | | 7 | | | | | Burst | Among groups | 10 | 3.39×10^6 | 3.39×10^{5} | 5.93 | 6.92×10^{-7} | 0.35 | 0.19 | 0.61 | | | Within groups | 93 | 5.31×10^6 | 5.71×10^4 | | | | | | | Intonhungt | Total | 103 | 8.70×10^6
6.74×10^6 | 6.74×10^5 | 2.64 | 7.00×10^{-3} | 0.15 | 0.04 | 0.39 | | Interburst | Among groups Within groups | 10
93 | 0.74×10^{3} 2.37×10^{7} | 0.74×10^{5} 2.55×10^{5} | 2.64 | 7.00×10 | 0.13 | 0.04 | 0.39 | | | Total | 103 | 3.05×10^7 | 2.55×10 | | | | | | | Interburst–Burst emission r | | 103 | 3.03/10 | | | | | | | | Burst (log ₁₀) | Among groups | 10 | 5.30 | 0.53 | 29.28 | 1.51×10 ⁻²⁴ | 0.76 | 0.61 | 0.89 | | Durst (10g10) | Within groups | 93 | 1.68 | 0.02 | 27.20 | 1.51×10 | 0.70 | 0.01 | 0.07 | | | Total | 103 | 6.98 | 0.02 | | | | | | | Interburst | Among groups | 103 | 4.26×10 ⁻⁶ | 4.26×10^{-7} | 92.14 | 0 | 0.91 | 0.84 | 0.96 | | | Within groups | 93 | 4.30×10 ⁻⁷ | 4.62×10 ⁻⁹ | | Č | | | | | | Total | 103 | - | - | Source of | | | | | | | Lower confidence | Upper confidence | |---|--|-------------------------|--|--|---------|------------------------|------|---|------------------| | Components | variation | d.f. | SS | MS | F-ratio | P | r | limit | limit | | Pulsation volume | | | | | | | | | | | Burst (log ₁₀) | Among groups
Within groups
Total | 8
541
549 | 13.75
11.19
24.94 | 1.72
0.02 | 83.15 | 0 | 0.59 | 0.42 | 0.81 | | Interburst (log ₁₀) | Among groups Within groups Total | 8
541
549 | 18.80
1.39×10 ²
1.58×10 ² | 2.35
0.26 | 9.09 | 9.0×10 ⁻¹² | 0.12 | 0.06 | 0.31 | | Pulsation duration | | | | | | | | | | | Burst | Among groups | 8 | 4.33×10^{3} | 5.41×10^{2} | 5.68 | 6.0×10^{-7} | 0.08 | 0.03 | 0.21 | | | Within groups
Total | 541
549 | 5.16×10^4
5.59×10^4 | 95.38 | | | | | | | Interburst (log ₁₀) | Among groups Within groups | 8
541 | 42.19 2.39×10^{2} | 5.27
0.44 | 11.95 | 9.0×10 ⁻¹⁶ | 0.16 | 0.08 | 0.37 | | | Total | 549 | 2.81×10^{2} | | | | | limit 0 0.42 0 0.06 0 0.08 0 0.25 0 0.08 0 0.35 0 0.35 0 0.15 0 0.10 0 0.61 0 0.22 0 0.38 | | | Pulsation emission rate | | | | | | | | | | | Burst (log ₁₀) | Among groups Within groups | 8
541 | 5.51
9.37 | 0.69
0.02 | 39.79 | 0 | 0.40 | 0.25 | 0.67 | | Interburst (log ₁₀) | Total Among groups Within groups Total | 549
8
541
549 | 14.88
13.42
73.66
87.08 | 1.68
0.14 | 12.27 | 3.0×10 ⁻¹⁶ | 0.16 | 0.08 | 0.38 | | Metabolic rate | | | | | | | | | | | (males and females)
(log ₁₀) | Among groups Within groups | 19
80 | 3.47
2.33 | 0.18
0.03 | 6.25 | 2.01×10 ⁻⁹ | 0.51 | 0.35 | 0.69 | | (females) (log ₁₀) | Total Among groups Within groups Total | 99
16
68
84 | 5.80
2.57
1.93
4.50 | 0.16
0.03 | 5.67 | 1.57×10 ⁻⁷ | 0.48 | 0.32 | 0.67 | | Frequency (males and females) | Among groups Within groups Total | 19
87
106 | 1.98×10 ⁴
2.69×10 ⁴
4.68×10 ⁴ | $1.04 \times 10^3 \\ 3.10 \times 10^2$ | 3.37 | 5.9×10 ⁻⁵ | 0.31 | 0.15 | 0.52 | | (females) | Among groups Within groups Total | 16
76
92 | 1.58×10^{4} 2.69×10^{4} 4.27×10^{4} | 9.87×10 ²
3.55×10 ² | 2.78 | 0.001 | 0.25 | 0.10 | 0.45 | | Mass
(males and females) | Among groups Within groups Total | 19
80
99 | 0.64
0.18
0.82 | 0.03 2.0×10^{-3} | 15.12 | 3.93×10 ⁻¹⁹ | 0.74 | 0.61 | 0.85 | | Flutter period and interburst | ts for the three cyclic | e pattern | | emales) | | | | | | | Volume | Among groups Within groups | 19
754 | 2.54×10 ⁻⁴
4.17×10 ⁻⁴ | 1.34×10 ⁻⁵
5.53×10 ⁻⁷ | 24.13 | 0 | 0.33 | 0.22 | 0.49 | | Duration | Total Among groups Within groups | 773
19
754 | 6.71×10^{-4}
5.87×10^{7}
4.59×10^{7} | 3.09×10 ⁶
6.08×10 ⁴ | 50.82 | 0 | 0.51 | 0.38 | 0.68 | | Emission rate | Total Among groups Within groups Total | 773
19
754
773 | 10.46×10 ⁷
6.64×10 ⁻⁶
4.66×10 ⁻⁵
5.32×10 ⁻⁵ | 3.49×10 ⁻⁷
6.18×10 ⁻⁸ | 5.65 | 2.88×10 ⁻¹³ | 0.09 | 0.05 | 0.18 | | | Source of | | | | | | | Lower confidence | Upper confidence | |--|--------------------------|-----------|----------------------|-------|---------|---|------|------------------|------------------| | Components | variation | d.f. | SS | MS | F-ratio | P | r | limit | limit | | Open period and bursts for | the three cyclic patte | erns (mal | es and females |) | | | | | | | Volume (log ₁₀) | Among groups | 19 | 1.87×10^{2} | 9.86 | 63.99 | 0 | 0.57 | 0.43 | 0.72 | | - | Within groups | 754 | 1.16×10^{2} | 0.15 | | | | | | | | Total | 773 | 3.04×10^{2} | | | | | | | | Duration (log_{10}) | Among groups | 19 | 2.10×10^{2} | 11.0 | 89.83 | 0 | 0.65 | 0.52 | 0.79 | | | Within groups | 754 | 92.7 | 0.12 | | | | | | | | Total | 773 | 3.03×10^{2} | | | | | | | | Emission rate (log ₁₀) | Among groups | 19 | 10.34 | 0.55 | 28.52 | 0 | 0.37 | 0.25 | 0.54 | | | Within groups | 754 | 14.47 | 0.02 | | | | | | | | Total | 773 | 24.81 | | | | | | | | Flutter period and interburs | sts for the three cyclic | c pattern | | | | | | | | | Volume | Among groups | 16 | 2.56×10^{2} | 16.01 | 31.52 | 0 | 0.43 | 0.31 | 0.61 | | | Within groups | 700 | 3.55×10^{2} | 0.51 | | | | | | | | Total | 716 | 6.11×10^{2} | | | | | | | | Duration | Among groups | 16 | 3.09×10^{2} | 19.32 | 33.99 | 0 | 0.45 | 0.33 | 0.63 | | | Within groups | 700 | 3.98×10^{2} | 0.57 | | | | | | | | Total | 716 | 7.07×10^{2} | | | | | | | | Emission rate | Among groups | 16 | 31.43 | 1.96 | 15.12 | 0 | 0.26 | 0.17 | 0.42 | | | Within groups | 700 | 90.88 | 0.13 | | | | | | | | Total | 716 | 1.22×10^{2} | | | | | | | | Open period and bursts for | the three cyclic patte | erns (fem | ales) | | | | | | | | Volume (log ₁₀) | Among groups | 16 | 1.39×10^{2} | 8.71 | 52.87 | 0 | 0.57 | 0.43 | 0.72 | | | Within groups | 700 | 1.15×10^{2} | 0.17 | | | | | | | | Total | 716 | 2.54×10^{2} | | | | | | | | Duration (log ₁₀) | Among groups | 16 | 1.60×10^{2} | 10.01 | 77.30 | 0 | 0.66 | 0.53 | 0.79 | | | Within groups | 700 | 90.64 | 0.13 | | | | | | | | Total | 716 | 2.50×10^{2} | | | | | | | | Emission rate (log ₁₀) | Among groups | 16 | 10.46 | 0.65 | 33.45 | 0 | 0.45 | 0.32 | 0.63 | | | Within groups | 700 | 13.68 | 0.02 | | | | | | | | Total | 716 | 24.14 | | | | | | | | Data were log ₁₀ transfor
Repeatabilities were calc
Sample sizes for individu | culated for females u | nless ind | icated otherwis | e. | | | | | | Appendix 1B. ANOVA table used to calculate the repeatability values and their upper and lower 95% confidence limits for each of the components of the cyclic patterns, as well as comparable components across all three of the cyclic patterns, metabolic rate, frequency and body mass, with body mass included as a covariate | Components | Source of variation | d.f. | SS | MS | F-ratio | P | r | Lower confidence limit | Upper
confidence
limit | |---|--|------------------------|--|--|----------|------------------------|------|------------------------|------------------------------| | DGC volume | variation | u.1. | טט | 1410 | 1 -14110 | 1 | 1 | mint | mint | | F-period | Among groups
Within groups
Total | 8
52
60 | 2.05
4.40
6.45 | 0.26
0.08 | 3.03 | 0.007 | 0.23 | 0.06 | 0.55 | | DGC duration | | | | | | | | | | | C-period | Among groups Within groups Total | 8
52
60 | 2.02×10 ⁶
3.66×10 ⁶
5.68×10 ⁶ | $2.53 \times 10^{5} \\ 7.03 \times 10^{4}$ | 3.59 | 0.002 | 0.28 | 0.10 | 0.60 | | F-period | Among groups Within groups Total | 8
52
60 | 1.50×10 ⁶
1.93×10 ⁶
3.43×10 ⁶ | $1.87 \times 10^{5} \\ 3.71 \times 10^{4}$ | 5.05 | 1.14×10 ⁻⁴ | 0.38 | 0.17 | 0.68 | | Interburst–Burst volume | 10001 | | 01.07.120 | | | | | | | | Burst (log ₁₀) | Among groups Within groups Total | 10
92
102 | 1.50
3.80
5.30 | 0.15
0.04 | 3.63 | 4.18×10 ⁻⁴ | 0.22 | 0.09 | 0.48 | | Interburst–Burst duration | | | | | | | | | | | Burst | Among groups
Within groups
Total | 10
92
102 | 3.86×10 ⁶
4.84×10 ⁶
8.70×10 ⁶ | 3.86×10^5
5.26×10^4 | 7.34 | 1.9×10 ⁻⁸ | 0.41 | 0.24 | 0.67 | | Interburst–Burst emission i | rate | | | | | | | | | | Interburst | Among groups Within groups Total | 10
92
102 | 1.85×10^{-6}
3.99×10^{-7}
1.27×10^{2} | 1.85×10 ⁻⁷
4.34×10 ⁻⁹ | 42.73 | 2.85×10 ⁻³⁰ | 0.82 | 0.70 | 0.92 | | Pulsation volume | | | | | | | | | | | Burst (log ₁₀) | Among groups
Within groups
Total | 8
540
548 | 14.45
10.41
24.86 | 1.8
0.02 | 93.68 | 0 | 0.62 | 0.42 | 0.81 | | Interburst (log ₁₀) | Among groups Within groups Total | 8
540
548 | 20.86 1.37×10^{2} 1.58×10^{2} | 2.61
0.25 | 10.27 | 2.08×10 ⁻¹³ | 0.14 | 0.07 | 0.34 | | Pulsation duration | | | | | | | | | | | Burst | Among groups
Within groups
Total | 8
541
549 | 4.14×10^{3}
5.10×10^{4}
5.52×10^{4} | 5.18×10 ²
94.38 | 5.49 | 1.12×10 ⁻⁶ | 0.07 | 0.03 | 0.21 | | Interburst (log ₁₀) | Among groups Within groups Total | 549
8
540
548 | 5.52×10^4 47.40 2.30×10^2 2.77×10^2 | 5.93
0.42 | 13.99 | 1.48×10 ⁻¹⁸ | 0.19 | 0.08 | 0.37 | | Emission rate | | | | | | | | | | | Interburst (log ₁₀) | Among groups
Within groups
Total | 8
540
548 | 13.37
71.41
84.78 | 1.67
0.13 | 12.59 | 1.23×10 ⁻¹⁶ | 0.17 | 0.10 | 0.41 | | Metabolic rate | | | | | | | | | | | (males and females)
(log ₁₀) | Among groups
Within groups
Total | 19
79
98 | 1.97
1.69
2.66 | 0.05
0.02 | 2.39 | 0.004 | 0.22 | 0.07 | 0.42 | | (females) (log ₁₀) | Among groups Within groups Total | 16
67
83 | 0.92
1.27
2.19 | 0.06
0.02 | 3.05 | 7.14×10 ⁻⁴ | 0.29 | 0.12 | 0.52 | | | Source of | | | | | | | Lower confidence | Upper | |--------------------------------------|----------------------------|-----------------|---|-----------------------|---------|-----------------------|------|------------------|---------------------| | Components | variation | d.f. | SS | MS | F-ratio | P | r | limit | confidence
limit | | Components | variation | u.1. | აა | NIS | r-rano | | 1 | ШШ | | | Frequency | | | | | | | | | | | (males and females) | Among groups | 19 | 2.11×10^{4} | 1.11×10^3 | 3.76 | 1.25×10^{-5} | 0.35 | 0.19 | 0.55 | | | Within groups | 86 | 2.55×10^4 | 2.96×10^{2} | | | | | | | | Total | 105 | 4.66×10^4 | | | | | | | | (females) | Among groups | 16 | 1.71×10^4 | 1.07×10^{3} | 3.16 | 3.96×10^{-4} | 0.29 | 0.13 | 0.51 | | | Within groups | 75 | 2.54×10^4 | 3.39×10^{2} | | | | | | | | Total | 91 | 4.25×10^4 | | | | | | | | Flutter period and interburs | sts for the three cycli | c pattern | s (males and fe | emales) | | | | | | | Volume | Among groups | 19 | 2.54×10^{-3} | 1.34×10^{-4} | 42.45 | 0 | 0.47 | 0.35 | 0.63 | | | Within groups | 753 | 2.4×10^{-3} | 3.19×10^{-6} | | | | | | | | Total | 772 | 4.94×10^{-3} | | | | | | | | Duration | Among groups | 19 | 6.12×10^7 | 3.22×10^{6} | 54.35 | 0 | 0.53 | 0.41 | 0.68 | | | Within groups | 753 | 4.47×10^7 | 5.90×10^4 | | | | | | | | Total | 772 | 10.59×10^7 | | | | | | | | Emission rate | Among groups | 19 | 2.63×10^{-5} | 1.38×10^{-6} | 15.60 | 0 | 0.24 | 0.16 | 0.38 | | | Within groups | 753 | 6.67×10^{-5} | 8.86×10^{-8} | | | | | | | | Total | 772 | 9.30×10^{-5} | | | | | | | | Open period and bursts for | the three cyclic natte | erns (ma | les and female | (2) | | | | | | | Volume (log ₁₀) | Among groups | 19 | 1.29×10^2 | 6.81 | 69.04 | 0 | 0.59 | 0.47 | 0.73 | | volume (log ₁₀) | Within groups | 753 | 74.24 | 0.10 | 07.04 | O | 0.57 | 0.47 | 0.75 | | | Total | 772 | 2.03×10^{2} | 0.10 | | | | | | | Duration (log ₁₀) | Among groups | 19 | 2.20×10^{2} | 11.6 | 138.12 | 0 | 0.74 | 0.64 | 0.85 | | Duration (logio) | Within groups | 753 | 63.22 | 0.08 | 150.12 | Ü | 0.71 | 0.01 | 0.05 | | | Total | 772 | 2.83×10^{2} | 0.00 | | | | | | | Flutter period and interburs | | | | | | | | | | | Volume | Among groups | c pattern
16 | 3.95×10^2 | 24.68 | 43.14 | 0 | 0.51 | 0.39 | 0.68 | | volume | Within groups | 700 | 3.99×10^{-2} | 0.57 | 43.14 | U | 0.51 | 0.39 | 0.08 | | | Total | 716 | 6.11×10^2 | 0.57 | | | | | | | Duration | | | 3.45×10^{2} | 21.54 | 38.29 | 0 | 0.48 | 0.36 | 0.66 | | Duration | Among groups | 16 | 3.43×10^{2} 3.93×10^{2} | | 36.29 | 0 | 0.48 | 0.30 | 0.00 | | | Within groups
Total | 700 | 7.07×10^{2} | 0.56 | | | | | | | Emission rate | | 716 | | 2.10 | 14.23 | 0 | 0.25 | 0.16 | 0.41 | | Emission rate | Among groups Within groups | 16
700 | 34.94
90.88 | 2.18
0.15 | 14.23 | 0 | 0.23 | 0.16 | 0.41 | | | Total | 716 | 1.07×10^2 | 0.13 | | | | | | | | | | | | | | | | | | Open period and bursts for | | | | < 0.4 | 5405 | 0 | 0.65 | 0.50 | 0.70 | | Volume (log ₁₀) | Among groups | 16 | 1.10×10^2 | 6.94 | 74.25 | 0 | 0.65 | 0.52 | 0.79 | | | Within groups | 700 | 65.39 | 0.09 | | | | | | | | Total | 716 | 1.75×10^2 | | | _ | | | | | Duration (log_{10}) | Among groups | 16 | 1.67×10^2 | 10.47 | 121.93 | 0 | 0.75 | 0.65 | 0.86 | | | Within groups | 700 | 60.13 | 0.09 | | | | | | | | Total | 716 | 2.27×10^{2} | | | | | | | | Data vyana lagus tnanafan | mad in some occes to | | iga tha diataibu | tions | | | | | | | Data were log ₁₀ transfor | | | | | | | | | | | Repeatabilities were calc | | | | | | | | | | | Sample sizes for individ | uais used for each pa | mem are | given in Table | : 1. | | | | | |