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There was an error published in J. Exp. Biol. 210, 935-945.

In Fig.·3A, the numbers assigned to each peak of the fractal landscape were displaced in relation to the peaks.

The correct version of the figure is reproduced below.

We apologise to authors and readers for this error.
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Introduction
The movement patterns of foraging animals are affected by

the availability and distribution of resources, as well as the
animals’ ability to forage coupled with the level of
physiological need (Bell, 1991). Ultimately, efficient searching
behavior results in higher energy gains relative to the time
and/or energy expended (Bell, 1991; Pyke et al., 1977).
Therefore, greater understandings of the factors that shape
foraging behavior are crucial to evaluate ecological
specialization and adaptation.

The use of electronic devices to track animal movement has
provided detailed information on the movement patterns and
prey-searching behavior of a wide variety of organisms (Austin
et al., 2004; Block et al., 2002; Costa, 1993; Hays et al., 2004).
As top predators forage in a patchy, hierarchical environment
(Fauchald, 1999), they display alterations in traveling speed
and direction between different behavioral phases in the track.
These phases are scale dependent (Fauchald et al., 2000), and
result in hierarchical area-restricted searching (ARS) pattern of
movement. This pattern has been shown to be a response to

patchy resource distribution (Benhamou, 1992; Fauchald and
Tveraa, 2003; Lode, 2000). To investigate foraging behavior in
a patchy environment it is necessary to independently and
accurately describe each ARS zone along a track.

Several techniques have been developed to measure the
scales at which ARS occurs (Robinson et al., 2007). One of the
simplest methods is to measure changes in transit speed along
a track (LeBoeuf et al., 2000). The assumption here is that
intensive searching is associated with reduced speed; other
approaches measure the changes in sinuosity and/or angularity
of the track (Erlandsson and Kostylev, 1995; Laidre et al.,
2004). However, none of these methods provide an index of
the scale or domain of the region of ARS. Several approaches
have been developed to measure the region or spatial scale of
the ARS. First-passage time (FPT) provides a measure of the
time an animal takes to cross a circle of a certain radius that is
moved along the track (Fauchald and Tveraa, 2003). The circle
radius corresponding to the highest variance in FPT is used to
define the animal’s operational spatial scale. One type of fractal
analysis uses a similar approach, but uses fractal dimension (D)
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(or fractal dimension estimator) instead of time (Nams, 1996).
A segment of a given length is moved along the track, and D
is calculated for each segment. As D generally increases with
track convolutions, the segment lengths corresponding to
highest average D, and/or highest variance in D, are used as a
cut-off to identify the operational spatial scales (Nams, 1996;
Nams, 2005). These two methods are similar in principle, but
produce different results. FPT analysis identifies a radius
(Pinaud and Weimerskirch, 2005) whereas the above fractal
analysis identifies a segment length (Fritz et al., 2003; Nams,
2005). Intense searching behavior is often a combination of
longer time spent and higher track convolutions in an ARS
zone, which in theory should be identified by both methods.
However, these methods have fundamental differences. One
focuses on time whereas the other focuses on space coverage,
both in an exclusive way. Therefore, the two methods are not
really measuring the same thing (Robinson et al., 2007) and the
use of one or the other has to be driven by underlying questions
and/or theory about ARS behavior. Both methods may
accurately detect the major ARS zones but they may differ in
describing them, and they have a major flaw: they both identify
scales that are roughly constant throughout the track (Fauchald
and Tveraa, 2003; Fritz et al., 2003; Pinaud and Weimerskirch,
2005). In order to finely describe ARS behavior, it is important
to identify the scale and position of each ARS zone
individually.

The present study describes and tests a new method for
quantifying ARS behavior in tracking data, and tests the effect
of the track quality on the efficiency of the method.

Materials and methods
Theory and analytical strategy

Imagine you lost your watch in a field. To search for it, you
zigzag here and there, but you do not move through the field
along a straight path. Unconsciously, your behavior will aim at
covering the space you are searching in, not just turning more.
This is an important consideration because track analyses often
involve turning rate and sinuosity indexes (Erlandsson and
Kostylev, 1995; Laidre et al., 2004), but none focused strictly
on space coverage. The fractal dimension of a set of two-
dimensional points can be seen as a measure of its propensity
to cover the plane, being a value of one for no plane coverage
(a straight line or a circle, for example) and two for full
coverage of some area in the plane (a Hilbert curve, for
example). The fractal dimension does not measure track
sinuosity per se, and, if sinuosity is the question of interest,
some other sinuosity indexes should be used instead
(Benhamou, 2004). When analyzing searching behavior it
makes sense to quantify how well an animal covers the region
or plane of interest both spatially and temporally: for example,
the greatest chance of recovering your watch requires that you
maximize the amount of area searched within the plane and this
will require more time. If your watch is not precious, you will
give up earlier and perhaps not cover the plane as well. Since
plane coverage and time are two fundamental ingredients for
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searching behavior, we argue that methods of track analysis
should quantify both components of searching behavior: time
and space coverage.

Based on these considerations, we develop a new method for
detecting and quantifying searching behavior focusing on space
coverage and time. The underlying idea is that animals should
increase their local plane coverage (i.e. fractal dimension of the
track) when they exhibit ARS behavior. After testing the
accuracy of the method on simulated tracks of known
characteristics, we tested the effect of track inaccuracy on the
process by altering the perfect simulated tracks in a way that
resembles Argos track qualities, and reanalyzed these tracks to
determine the effect of track quality.

Argos track qualities vary considerably with the type of
animal tracked (Tremblay et al., 2006). Consequently,
differences in track qualities can affect apparent plane coverage
(and sinuosity) and/or spatial distribution of presence (i.e.
time), and it is therefore important to quantify these effects. We
therefore simulated albatross-like and elephant seal-like tracks.
These two species were chosen because they represent two
extremes in animal speed and in Argos track qualities
(Tremblay et al., 2006).

Note that we focused here on the description of small-scale
ARS, where animals are presumably searching for prey. At a
larger scale, the animal is probably searching for suitable areas
that include small-scale ARS (Pinaud and Weimerskirch,
2005).

Track simulations

Tracks were simulated by concatenating portions of tracks
determined by correlated random walks (CRW) with different
degrees of correlation between successive steps. The degree of
the correlation between successive angles was controlled by the
standard deviation (s.d.) used to generate the circular normal
distribution from which the turning angles were randomly
selected. When s.d. is small, the path is straighter, and when
s.d. is large, the track approaches an uncorrelated random walk
(i.e. Brownian motion). The process essentially follows the
simulation process described by Fauchald and Tveraa, with
some adjustments (Fauchald and Tveraa, 2003).

Adjustments include the following:
(1) Speed was not considered constant between steps; instead

it was selected from truncated normal distributions of known
mean and s.d., based on real data (Table·1).

(2) Tracks were built by concatenating three kinds of phases
to form a type of three-state Markov model for the track: (i)
very straight, directed movements at the beginning and at the
end of the track to simulate large-scale dispersal of the animal
towards a hypothetical foraging zone. These portions had a
lower turning rate and higher speed; (ii) ARS movements, with
a higher turning rate and slower speeds; and (iii) between
straight and ARS portions and between two ARS portions,
movements of intermediate turning rates and intermediate
speed were used. This aims to simulate animal searching at
larger spatial scales.

(3) The time spent in each ARS movement was controlled,
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and the ARS movement was restricted to a circle of known size.
The circle’s size did not necessarily correspond to the ARS size
because we did not force the ARS movement to fill the circle.
Therefore, the circle dimensions represent the maximum
possible size of the ARS. Circles were filled only when the time
spent in them was sufficient. If not, the ARS sizes were
necessarily smaller than the corresponding circle and were not
known precisely. Although this could be seen as a major flaw,
we argue that forcing the ARS to describe a circle of know
dimension is much more problematic. In such a case we would
generate what the method is aimed at describing (not what the
animal actually does), leading us to artificially enhance the
apparent performance of the method. Circles are used as an
approximation of the ARS size and shape, and were determined
using a statistical method (detailed below).

The parameters were chosen for simulating each type of
track and for each portion according to Table·1. An example
of a simulated track is given in Fig.·1A. The time between each
step was 5·min.

Alteration of tracks

Intact simulated tracks were considered to be near error-free
and similar to Global Positioning System (GPS) tracks. These
tracks were then altered spatially and temporally, in order to
introduce the same kind of error typically obtained within
albatross and elephant seal Argos tracks.

The number of locations per day used to sub-sample each

track was randomly selected from a truncated normal
distribution centered on 17.770 and 5.125 with a s.d. of 4.450
and 2.826 in albatross and elephant seal tracks, respectively.
Minima were set to six and three locations per day and maxima
were set to 26 and 16 locations per day, for albatross and
elephant seals, respectively. These values were based on data
collected for the TOPP program during 2002–2005
(http://www.toppcensus.org/).

Similarly, we introduced spatial error to each selected point
(Fig.·1B). For this, a quality class was randomly attributed to
each selected point, in order to match mean proportions of the
various quality classes in real deployments (Table·2). An error
was then randomly selected from a normal distribution centered
on the mean error and with the same s.d. as the errors for the
corresponding class (Table·2), as obtained during static tests at
the laboratory [similar results to those found in tests by Vincent
et al. (Vincent et al., 2002)].

The resulting tracks were then considered to be similar to
Argos tracks, and were therefore filtered and further
interpolated along a Bezier curve (�=0.2), following Tremblay
et al. (Tremblay et al., 2006) (Fig.·1C).

The filtering process involved a speed filter set at 80 and
10·km·h–1 for albatross and elephant seal tracks, respectively.
An angle filter set at 170° was also used in both types of track,
to reject small-scale spikes not removed by the speed filter. In
addition, when locations were closer than 10·min, the location
with the least quality was removed irrespective of its quality

Table·1. Parameters used to simulate animal tracks containing area-restricted search (ARS) patterns

Calculation for Calculation for 
Parameter Characteristic Albatross-like tracks Elephant seal-like tracks

Interval between steps Constant 5·min 5·min

Average animal speed (km·h–1) Random 30±20 (0.1–100) 3.5±2.3 (0.1–7)
(truncated normal)

Speed during directed movements Average speed + Random change = Random change = 
random change 10–30% (uniform) 10–30% (uniform)

Sinuosity during directed movements Random Random s.d. = Random s.d. = 
(circular normal). Mean=0 0.005–0.010 (uniform) 0.005–0.010 (uniform)

Speed during intermediate movements Random Same as Same as 
(truncated normal) average speed (above) average speed (above)

Sinuosity during intermediate movements Random Random s.d. = Random s.d. = 
(circular normal). Mean=0 0.04–0.06 (uniform) 0.04–0.06 (uniform)

Speed during ARS movements Average speed – Random change = Random change = 
random change 10–30% (uniform) 10–30% (uniform)

Sinuosity during ARS movements Random Random s.d. = Random s.d. = 
(circular normal). Mean=0 0.5–0.7 (uniform) 0.5–0.7 (uniform)

Number of ARS in the track Random (uniform) 1–20 1–20

Maximum size of ARS (radius) Random (uniform) 1–60·km 1–60·km

Time spent in ARS Random (uniform) 3–56·h 10–480·h

When randomly selected values from a normal distribution were used, the mean and s.d. of the distribution is given. Minimum and maximum
values are given in parentheses. The terms ‘normal’ and ‘uniform’ refer to the type of distribution.
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class. This allows for the removal of induced sinuosity, created
by location proximity, and avoids taking into account locations
that are calculated using common hits from the transmitters (in
real data). All quality classes were allowed to be removed.

Calculating fractal dimension

A fractal dimension (D) can be calculated from a set of
points using several distinct methods that differ in accuracy, in
the sensitivity to the number of points used and computing time
required (Esteller et al., 1999; Kallimanis et al., 2002; Nams,
2006). It is therefore essential to carefully select the appropriate
algorithm for a given application (Esteller et al., 1999; Jelinek
et al., 1998). In this study, fractal D was calculated using the
information dimension (Halley et al., 2004) as it is less
prone to errors in finite datasets (A. J. Roberts:
http://www.sci.usq.edu.au/staff/robertsa/soft.html). We also
tested another algorithm implementing the box-counting
method to calculate fractal D (Giorgilli et al., 1986; Liebovitch
and Toth, 1989). The results were noticeably less accurate (data
not shown).

The accuracy of our calculation was assessed using five
mathematical curves of known fractal dimension (Fig.·2): a
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Hilbert curve composed of 4096 points (D=2), a Sierpinski
triangle of 2409 points (D=1.58), a Koch’s snowflake of 3075
points (D=1.26), a circle of 2000 points (D=1) and a straight
line of 2000 points (D=1). For these curves there is no
difference between the information dimension and any other
fractal dimension. The information dimensions D calculated on
these sets were 2.01, 1.56, 1.29, 1.05 and 1.05, respectively,
corresponding to a mean error of 3%.

To evaluate the effect of the number of input points on fractal
D estimates, each curve was randomly sub-sampled by a
different number of points and the fractal D was calculated on
each subset. Since each dataset was altered, its apparent fractal
dimension was also modified (Fig.·2), but the relative order of
the determined fractal D of the sets was apparent with at least
50 points, and unequivocal when using 100 points or more. In
our case study, 100 points represented retention of 2.4–20% of
the total number of data points. This shows that the algorithm
detected the differences in relative complexity between the sets
even when using a relatively small proportion of the data. The
estimate of fractal D stabilizes and the s.d. is acceptable even
when a minimum of ~100 points are used (Fig.·2). The stability
of the fractal D estimates, with respect to the number of points,
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Fig.·1. Example of a simulated track of an elephant seal. (A) A Global Positioning System (GPS)-like track containing two area-restricted
searching (ARS) zones. (B) This shows the track after the introduction of spatial error and temporal sub-sampling, as obtained in real deployments
using the Argos tracking technique. (C) The same track after the filtering and the interpolation process (see Materials and methods for details).

Table·2. Parameters used to spatially alter the simulated tracks

Mean accuracy s.d. accuracy Albatross tracks Elephant seal 
Argos class (km) (km) (%) tracks (%)

3 0.178 0.386 1.150 2.149
2 0.372 0.433 3.620 3.799
1 0.770 0.958 11.054 5.893
0 2.539 6.549 47.159 9.028
A 0.720 2.523 16.274 23.006
B 5.692 41.414 17.601 48.210
Z 205.943 382.994 3.142 7.914

Accuracy data were obtained using our own static tests (Y.T., A.J.R. and D.P.C., unpublished). Percentages were calculated using 24·564 hits
from 153 deployments on albatrosses and 78·565 hits from 106 deployments on elephant seals.
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reflects the sensitivity of the shape of the curve to sub-
sampling. As an illustration, consider the decrease in estimated
fractal D of the circle in Fig.·2: the shape of a circle is indeed
affected by the number of points that defines it, being here a
polyhedron of number_of_points –1 number of edges. The
higher the numbers of points, the closer to the real shape of the
circle and, therefore, the more the estimated fractal D tends to
1. The fact that fractal D is <1 for the straight line data set is
normal, because, in this case, it is a measure of line filling
(D�1) rather than plane filling (1�D�2).

A fractal dimension does not characterize a dataset at some
specific length scale; instead it characterizes a self-similar
pattern that occurs in the data across many length scales.
Thus, basic fractal dimension estimates come from fitting a
straight line to data on a log-log plot where one axis covers
a range of length scales. As part of a least-squares fit, the
algorithm not only determines the two parameters of the best
fractal similarity, but also the two length scales between
which the fractal similarity holds. For the data in this work,
we found that fractal self-similarity holds over an order of
magnitude in scale. Such a decade of length scales is
acceptable to claim fractality (see Feder, 1988). In our
application, it is necessary to note that consistent estimates of
fractal dimension (i.e. higher values for higher plane
coverage) are more important than strictly accurate estimates.
Therefore, if the self-similarity in our tracks is different to the
mathematical curves, the accuracy of fractal dimension may

change slightly, but this is not detrimental because
consistency is maintained (see below).

Implementation of the fractal landscape method

The fractal landscape method consisted of four distinct steps.
Step 1: we determined a particular segment length (i.e. a

distance) for the track at which the largest most common ARS
occurred. Since speed is reduced in ARS, we determined the
segment length as follows. First, the rank of speed between
successive steps was computed. Second, the portion of the
consecutive lowest third of ranks was determined. Third, the
distance traveled during these portions of relative low speed
was calculated. Finally, we used the longest of these distances
as the segment length. This segment length is used as the
window size for the next step.

Step 2: we calculated fractal D along the track. For each
point, D was calculated using the locations belonging to the
segment centered on each point (the window size). When the
number of points was more than 200, we randomly selected
200 points for the given window. This considerably reduced
the computing time while preserving reasonable accuracy
(Fig.·2), ensuring that sufficient data were used in each D
estimate. The plot of D against time describes fractal peaks and
valleys, i.e. the fractal landscape (Fig.·3A).

Step 3: we automatically detected a threshold value that
distinguished relevant fractal peaks from fractal valleys. In
order to distinguish a minor oscillation from a real fractal peak,
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we found the threshold value over which one oscillation in
fractal D could be considered a peak. For this, we counted the
number of peaks above each potential threshold value. When
the potential threshold value was small and within the baseline,
the number of peaks above it increased dramatically (Fig.·3B).
This point was chosen as the threshold cut-off.

Step 4: based on this threshold, we then extracted fractal
peak characteristics, which were used to visualize and quantify
ARS behavior. For each peak we extracted its duration, area
above the threshold value, mean fractal D, and the circle
position and size where each fractal peak was overlaid on the
mapped track (Fig.·3C). The zone corresponding to each fractal
peak is determined by a circle centered on its mean coordinates.
Standard deviations of the coordinates were calculated for the
x and y axes. The radius of the circle was then calculated as
three times the smaller of the two s.d. This reduced the effects
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of outliers, and kept the majority of ARS coordinates within
the circle. High-intensity-searching behavior can be seen as the
most efficient method of covering the localized circle (high
fractal D) over a long time interval and is therefore defined by
a high area of fractal peak. This area was thus calculated and
used as an index of searching intensity, and color coded for
visualization in Fig.·3C.

Results and discussion
Analysis of intact simulated tracks

As expected, fractal dimensions increase when points from
the track segments include points from an ARS. A plot of
fractal D against time clearly reveals peaks and valleys, i.e. a
fractal landscape (Fig.·3A). For each fractal peak, we extracted
the corresponding time and position data from the track. The
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positions of the peaks corresponded very closely with the most
tortuous portions of the track (black sections of track in
Fig.·3C). Overall, 98.7% of the 456 simulated ARS zones were
correctly identified (Fig.·4A). We examined the few ARS that
were not correctly identified, and found that they were all
concatenated with another ARS because the time (and distance)
between them was very short. Consequently, 100% of the ARS
found by the method overlapped with at least one simulated
ARS. As expected, sizes of the ARS were found to be mostly
inferior to the size of the circle in which the simulated ARS
was forced to be (Fig.·5), and visual inspection shows that
indeed, the calculated circle size matched the actual size of the
ARS (Fig.·5). Approximately 98% (38.8+59) and 99%

(37.5+62) of the track locations (i.e. time)
were correctly identified as being part of an
ARS or not, in albatross-like and elephant
seal-like tracks, respectively (Table·3). This
shows that the fractal landscape method is
near error-free when used with near-perfect
tracks (e.g. using GPS).

Analysis of corrected simulated tracks

The introduction of Argos-like errors
into the tracks resulted in two different
effects. Some ARS were lost (i.e. existent
but not found), and some ARS were
produced (i.e. found but non-existent). As a
result, the number of ARS regions was
more variable when Argos tracks were used
(Fig.·4B).

In albatross-like degraded tracks, 9.6%
of the track’s ARS were lost whereas 90.4%
appropriately identified areas of actual
ARS. In elephant seal-like degraded tracks,

these values were 16.3 and 83.7%, respectively. In addition, the
number of produced ARS regions was 1 out of 105 and 26 out
of 108 in albatross- and elephant seal-like tracks, respectively.
As a result of the differences in track qualities between
albatross- and elephant seal-like tracks, elephant seal tracks had
more lost and produced ARS regions (i.e. more errors) than in
albatross-like tracks. However, some of these errors can be
easily flagged: produced ARS were generally short in time and
intensity, with 65.6% of them belonging to the lowest quintile
of ARS intensities (area under the peak, see Materials and
methods). The deletion of all ARS regions where the search-
intensity index falls within the lowest quintile can remove
many of the wrong ARS regions, while losing only a few of

the good but not intense ARS regions, in
elephant seal Argos tracks.

Nevertheless, the proportion of
locations (i.e. time) correctly identified
as in or out of an ARS was still
reasonably high (Table·3; 89.5% in
albatrosses and 83.8% in elephant
seals). Note that Argos inaccuracies
caused a disproportionate error towards
lost ARS rather than produced ARS in
both kinds of tracks (Table·3).
Logically, ARS are missing because of
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temporal degradation, whereas they are produced through
spatial degradation introducing more spatial coverage. This
indicates that the biggest problem with using Argos data is not
the spatial inaccuracy but the relatively low sampling rate. In
this respect, recently developed methods for filtering Argos
data without deleting points (Jonsen et al., 2005) should
considerably improve the situation, since it is common to delete
a third to a half of the raw Argos data with classical filters
(Austin et al., 2003; McConnell et al., 1992).

However, differences in spatial accuracies between
albatross-like and elephant seal-like corrected tracks had a
visible effect: 4.7 times more locations were incorrectly
attributed to belonging to an ARS in elephant seal- compared
with albatross-like tracks. This was the largest difference in the
results between the two kinds of tracks (Table·3).

Spatial accuracy also affected ARS size. Not surprisingly,
ARS radii are larger in degraded tracks than in intact tracks,

Y. Tremblay, A. J. Roberts and D. P. Costa

and this difference was higher in elephant seal- than in
albatross-like tracks (Fig.·6). We determined that ARS radii in
corrected tracks could be corrected by a factor of 1.2 and 2.2
in albatross- and elephant seal-like tracks, respectively.
Dividing the radii by these factors allowed us to match the
distribution of the ARS radii obtained with intact tracks
(Fig.·6). Note that as we chose two extreme cases in terms of
Argos track qualities, it is expected that correction factors
applied to datasets of intermediate qualities should necessarily
be intermediate as well.

Does the method work on real data?

We applied the method on real non-duty-cycled Argos tracks
of 31 albatrosses and 20 elephant seals and the output was
consistent with results from this study. In the Laysan albatross
(Phoebastria immutabilis) track shown in Fig.·7, nine peaks
were clearly identified in the fractal landscape, each peak

corresponding to an ARS on the
track. Interestingly, the ARS
regions with the highest intensity
index (highest area under the
peak, see Materials and methods)
were distributed along a
west–east transect whereas the
lowest indexes were found in
ARS regions north and south of
this line (Fig.·7). This line is
situated approximately
1700–2000·km north of the
breeding colony (Tern island,
Hawaii), and corresponds with
the position of the food-rich
North Pacific Transition Zone
between sub-Arctic and
subtropical waters at this time
period (Hyrenbach et al., 2002;
Polovina et al., 2000). This result
indicates that more intensive
ARS behavior occurred when
closer to the front, and shows the
utility of this index in identifying
biologically important regions.

Table·3. Percentages of track locations in relation to initial status [in area-restricted search (ARS) versus not in ARS] and status
found by the fractal landscape method

Results from the fractal landscape method

Intact tracks Degraded tracks

Location status In ARS Not in ARS In ARS Not in ARS

Albatross-like simulated tracks (N=10) In ARS 38.8±8.2 1.5±1.7 30.8±7.2 9.5±5.7
Not in ARS 0.7±0.6 59.0±7.1 1.0±0.7 58.7±6.3

Elephant seal-like simulated tracks (N=10) In ARS 37.5±11.3 0.2±0.1 26.1±8.8 11.6±9.7
Not in ARS 0.3±0.5 62.0±11.4 4.7±5.5 57.7±11.9

Note that the number of location is strictly equivalent to time, because track locations were equally spaced in time.
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How sensitive is the method to the window size?

We ran a sensitivity analysis to investigate how the segment
length used for the estimation of fractal dimension affects the
output of the method. We ran the analysis 60 times on one
elephant seal-like track containing seven ARS (30 times for
both the intact and the corrected track versions). For each
iteration, the segment length was changed from 20–600·km by
steps of 20·km. The segment length had little effect on the ARS
detection ability of the method. The range over which 6–8 ARS
were detected was between 40–500 and 100–600·km in intact
and corrected tracks, respectively (Fig.·8). This indicates that
the segment length can be fixed for a set of tracks from different
animals, and does not need to be calculated for each individual
track.

Technical problems encountered and how they were solved

When we implemented the method, the first problem was the
large amount of computing time initially required. This was
solved as described in the methodology, by sub-sampling the
data if more than 200 points were available. The change in
computing time was important (empirically), and a 6-month
track interpolated every 5·min can be processed in just a couple
of minutes with a standard laptop.

Later, we realized that degrading the track affects the speed

calculation along the track, and this sometimes posed problems
for the calculation of the window’s size (step 1 of the method).
This was solved by smoothing the speed data using a classic
moving average filter. The window used for the filter was
simply chosen by visually interpreting the plot of speed against
time, in a way that maintains the major oscillations and
removed high-frequency noise. The process was always
obvious and straightforward to achieve and therefore we did
not automate it.

A similar problem arose with the high-frequency noise in the
consecutive fractal D calculations (quick oscillations in the
fractal landscape), and in the determination of the threshold.
The problem was solved in the same manner, by using a
moving average smoothing.

Comments on the method

Concerns have been raised about the use of fractal geometry
in biological sciences (Halley et al., 2004; Turchin, 1996) and,
in particular, the use of fractal dimension (D) to estimate track
sinuosity (Benhamou, 2004). Some criticism results from the
confusion over what the fractal dimension, or a fractal
dimension analysis, measures biologically (Jelinek et al.,
1998). In the analysis of animal distribution there are several
ways of applying fractal geometry concepts (Laidre et al.,
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2004; Nams, 1996; Russell et al., 1992; With, 1994). A
common mistake is that D measures sinuosity (Benhamou,
2004; Laidre et al., 2004; Nams, 1996). The track of an animal
that turns 180° at every movement step will show very high
sinuosity but minimum D. Similarly, a track describing a circle
and a track describing a straight line both have a low D value
(namely one) but will have different sinuosity. A high D value
will only result when a track’s convolutions lead to reasonably
efficient coverage of an area in the plane. In our study, D
should be considered as an area-filling index, and is therefore
particularly suitable for the analysis of searching behavior.
Fractal dimension is classically used in studies interested in
plane or volume filling measurements (Chmel et al., 2005; Kim
and Kim, 2005; Phattaralerphong and Sinoquet, 2005; Uttieri
et al., 2005). A recent study using fractal dimension in three-
dimensions highlighted the subtle differences between degree
of convolution and fractal dimension (Uttieri et al., 2005).

Calculating a fractal dimension for non-fractal objects is also
problematic. In our case, the range of length scales over which
our calculation was done was always >10, which indicates that
our segments were near-fractal. Although this was true in
simulated intact tracks, this was artificial in corrected tracks
and resulted from the interpolation process. The interpolation
process was, however, crucial in order to obtain accurate
estimates of D.

The main advantage of the fractal landscape method over
others is that it provides a means to find and precisely describe
each ARS zone separately. The method is an application of
fractal geometry rather than a fractal analysis per se. It permits
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measurement of the variance in the characteristics of ARS
zones, which is very informative and not possible with the
previously available methods. Our method also produced
results that were spatially explicit and quantitatively
straightforward to interpret.

The principle of the method was focused on the animal’s
efficiency in covering some area of the plane. The places where
this efficiency was relatively higher in the track were
considered to be part of an ARS. It is important to note that
this is different to focusing on the time the animal spends in
some zones, as this time can be spent immobile or in rectilinear
movement. The relationship between these two aspects can be
easily confused as they are potentially linked. However, the
link goes only one way: high plane coverage efficiency
involves more time, but the reverse is not true. The reverse
statement can, however, appear true when too much random
inaccuracy affects the track. Together with our results, this
indicates that the method’s interest increases with the tracks’
quality because the ability to discriminate between the effects
of time and plane coverage increases. With the increasing usage
of GPS tags, this method could potentially help in
understanding subtle aspects of foraging behavior, such as the
temporal optimization of searching efficiency (or how to search
more space in a minimum amount of time). With lower quality
tracks, the same can be achieved, but only at larger scales, for
which track inaccuracy is negligible.

Comments on the concept of scale

Our method provides an efficient approach to finding and
describing regions of small-scale ARS but not in determining
other, larger scales of movement. By contrast, the first-passage
time method and the traditional fractal analysis method are
more designed to identifying average scales at which animals
modify their behavior. In both methods, this is done in different
ways, using and outputting different measures. Nobody can tell
which is more appropriate, because there is no consensus on
what really is a scale or an ARS. Therefore, fundamental to this
discussion is the question: what are the appropriate scales of
measurement of an animal track, and in which units should they
be measured?

Using a circle to approximate the size of an ARS region
appears to be an acceptable measure because, by definition, it
is of small scale and it generally looks circular. However, when
an animal forages at larger scales, a circle is generally not an
appropriate descriptor of the region of movement (Pinaud and
Weimerskirch, 2005) and thus does not accurately describe the
animal’s movement. The segment length used in classical
fractal analysis appears more appropriate in this respect.
However, animal tracking data are by nature two-dimensional
and because filling the searched space as efficiently as possible
is a key component of searching behavior, we believe that the
most relevant metric of ARS is the amount of coverage of a
plane (i.e. an area) (taking the earlier example of the lost watch,
this makes intuitive sense). For ARS, the area of the circle
could be used as an estimate of the smallest scale. For the larger
scale, techniques used in estimates of territory size and home
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range could be used, such as the convex polygon method
(example given in Fig.·7) or a more sophisticated kernel
analysis that describes the distribution of ARS or track location.
This would allow accurate description of areas that match the
shape of the animal space-use pattern at all scales. Nonetheless,
the fractal landscape method derived here provides a measure
of the ARS of small-scale events with good precision, and with
the added advantage of providing a measure of the time spent
searching within that localized region. Depending on the
questions of interest, different metrics could potentially be used
to create a similar landscape and to find associated zones
(speed, sinuosity index, etc). For example, as speed is often
related to energy expense, a plot of speed against time could
be used to determine the portion of lower versus higher speeds
(i.e. potential energy expense). The principle is simple,
intuitive and different metrics can be adapted to the question
initially asked.

This research was part of the Tagging of Pacific Pelagics
(TOPP) program, funded by the National Ocean Partnership
Program (N00014-02-1-1012), the Office of Naval Research
(N00014-00-1-0880 and N00014-03-1-0651) and the Alfred P.
Sloan, the Packard and The Gordon and Betty Moore
Foundations.
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