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INTRODUCTION
Air-breathing diving vertebrates, especially species that make deep

and long dives, exhibit physiological adaptations in their muscles

(and other tissues) that sustain an aerobic, lipid-based metabolism

under conditions of hypoxia and ischemia. These adaptations

increase an animal’s aerobic dive limit (ADL), which is the longest

dive that an animal can make while relying primarily on oxygen

stored in the blood and muscle to sustain aerobic metabolism. Our

previous studies of adult Weddell seals (Leptonychotes weddellii),
harbor seals (Phoca vitulina) and Steller sea lions (Eumatopias
jubatus) have revealed that their muscle adaptations include: (1)

an increased aerobic capacity (or one that is matched to routine

levels of exertion), (2) a reliance on fatty acid catabolism for aerobic

ATP production, (3) enhanced oxygen storage and diffusion

capacity and (4) a reduced dependency on blood-borne oxygen and

metabolites (e.g. decreased capillary density) compared with

terrestrial mammals (Davis and Kanatous, 1999; Davis et al., 1991;

Kanatous et al., 1999; Kanatous et al., 2001; Kanatous et al., 2002;

Polasek et al., 2006).

The ontogeny of these skeletal muscle adaptations has been poorly

described in diving mammals. By contrast, numerous studies

involving terrestrial mammals have described changes in fiber type

and metabolic profile of skeletal muscles as a function of exercise

and ontogeny. For example, detailed transcriptional analyses have

been undertaken to define upstream activation motifs including a

CCAC box, A/T element, nuclear factor of activated T cells (NFAT)

response element and E boxes that are necessary for muscle-specific

transcription of the oxidative fiber program that includes the

transcription of myoglobin (Chin, 2004; Chin, 2005; Chin et al.,

1997; Chin et al., 1998; Chin et al., 2003). Following differentiation,

myoglobin and oxidative fiber expression are coordinately regulated

by neural and muscular activities that stimulate calcium signaling

within the cell; specifically through calcium-induced calcium release

through the interaction between cell surface l-type calcium channels

and the ryanodine receptors of the sarcoplasmic reticulum. Stimuli

that enhance intracellular calcium levels increase calcineurin (a

Ca2+/calmodulin-dependent serine phosphatase) activity and gene

expression. Upon activation, calcineurin dephosphorylates the

transcription factor NFAT, which translocates to the nucleus and

combinatorially interacts with other transcription factors to regulate

myoglobin and oxidative fiber gene expression during ontogeny of

exercise in terrestrial mammals. Since myoglobin concentrations

and oxidative capacities are important adaptations in the skeletal

muscles of divers, the present study hypothesizes that the calcium

calcineurin pathway will play an important role in the ontogeny of

the skeletal muscles in Weddell seals.

Smaller, juvenile animals are less capable divers than adults, partly

because of their higher mass-specific metabolic rate and
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SUMMARY
Our objective was to determine the ontogenetic changes in the skeletal muscles of Weddell seals that transform a non-diving pup
into an elite diving adult. Muscle biopsies were collected from pups, juveniles and adults and analyzed for changes in fiber type,
mitochondrial density, myoglobin concentrations and aerobic, lipolytic and anaerobic enzyme activities. The fiber type results
demonstrated a decrease in slow-twitch oxidative (Type I) fibers and a significant increase in fast-twitch oxidative (Type IIA) fibers
as the animals mature. In addition, the volume density of mitochondria and the activity of lipolytic enzymes significantly
decreased as the seals matured. To our knowledge, this is the first quantitative account describing a decrease in aerobic fibers
shifting towards an increase in fast-twitch oxidative fibers with a significant decrease in mitochondrial density as animals mature.
These differences in the muscle physiology of Weddell seals are potentially due to their three very distinct stages of life history:
non-diving pup, novice diving juvenile, and elite deep diving adult. During the first few weeks of life, pups are a non-diving
terrestrial mammal that must rely on lanugo (natal fur) for thermoregulation in the harsh conditions of Antarctica. The increased
aerobic capacity of pups, associated with increased mitochondrial volumes, acts to provide additional thermogenesis. As these
future elite divers mature, their skeletal muscles transform to a more sedentary state in order to maintain the low levels of aerobic
metabolism associated with long-duration diving.
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proportionately smaller blood and muscle oxygen stores (Burns,

1996; Burns et al., 1999; Kooyman et al., 1983). In addition, the

muscle adaptations (as described above) that enhance diving

performance may not completely develop until a young animal is

several years old. As a result, they can neither dive as long nor as

deep as adults. Young Weddell seals are therefore at a disadvantage

in their ability to forage on deep-living prey such as Antarctic

silverfish (Pleuragramma antarcticum), and this appears to influence

survival during the initial years of life (Testa, 1987). Therefore, the

ontogeny of muscle aerobic capacity, lipid metabolism and oxygen

stores in the skeletal muscles is important for diving ability, yet we

have only recently begun to describe the development of these

physiological variables. In the present study, we investigate the

ontogeny of skeletal muscle adaptations that ultimately determine

the diving capabilities of Weddell seals and hypothesize a shift

towards increased aerobic fibers and enzymes as Weddell seals

develop.

MATERIALS AND METHODS
Animals

Twenty-four newborn Weddell seal pups (Leptonychotes weddellii
L.) (age 3–5 weeks, mean mass 75±3 kg) were captured over three

field seasons (October to December of 2002, 2005 and 2006) using

mild physical restraint or a purse string net near the pupping

colonies in McMurdo Sound, Antarctica. Likewise, 18 juvenile

(age 1–2 years, mean mass 120±5 kg) and 26 adult Weddell seals

(age ≥7 years, mean mass 385±13 kg) were captured with a purse

string net along natural tidal cracks in McMurdo Sound. The ages

of all the seals were determined from flipper tags using the data

provided by personal communication with R. Garrott, J. Rotella

and D. Siniff. The seals were sedated with ketamine [1.5 mg kg–1

(Davis et al., 1983; Davis et al., 1999)], weighed with a hanging

digital scale (accuracy ±0.5 kg), and muscle biopsies were taken

under local anesthesia. In order to standardize our sampling, all

biopsies were taken from the mid-belly of the muscle and at the

same location in all age classes (one-third of the body length from

the tail). Pups were returned to their mothers within 30 min of

recovery from mild sedation. Juveniles and adults were detained

for less than one hour post-biopsy and were released near the site

of capture once the animals had regained full voluntary

locomotion.

Muscle biopsies
Three muscle samples of approximately 50mg each were collected

with a 6-mm biopsy cannula (Depuy, Warsaw, IN, USA) from the

swimming (m. longissimus dorsi) muscle. Control samples were

collected from the m. soleus, a predominantly slow oxidative muscle

of laboratory rats (Sprague Dawley) and mice (C57/Bl/6) euthanized

by cervical dislocation after 2–3min of carbon dioxide anesthesia.

Muscle samples were placed either into 2% glutaraldehyde fixative

or frozen in liquid nitrogen immediately upon collection for western

immunoblot analysis, measurement of enzyme activities and

myoglobin concentration. Due to the extremely cold environmental

temperatures at the time of sampling (–10 to –40°C), the muscle

samples for fiber typing were split to determine the best cryo-

preservation technique under these conditions. One half were

mounted on foil in gum tragacanth and tissue freezing compound

and frozen in liquid nitrogen-cooled isopentane for 15–30s. The

other half were fixed in 4% paraformaldehyde overnight, incubated

in a sucrose/glycerol-based cryoprotectant for 30min to minimize

freeze artifact, mounted on foil in gum tragacanth and tissue freezing

compound and frozen in liquid nitrogen-cooled isopentane for

15–30s. Frozen samples were stored at –80°C until analysis for

western immunoblot analysis, fiber typing, enzyme activity and

myoglobin concentration.

Measurement of enzyme activities and myoglobin
concentrations

Muscle samples were thawed, weighed and homogenized at 0°C

in buffer containing 79% phosphate-buffered saline (PBS), 20%

glycerol, 1% TWEEN 20, 1mmol l–1
DL-dithiothreitol and protease

inhibitor cocktail. The homogenates were spun for 4–5 min at

10,000g, and the supernatant was divided into aliquots and stored

at –80°C until used for the assays. The enzymes assayed were as

follows: citrate synthase (CS), important in the citric acid cycle;

cytochrome c oxidase (COX), as a measure of the flux though the

electron transport chain; β-hydroxyacyl CoA dehydrogenase

(HAD), an indicator for the β-oxidation of fatty acids; lactate

dehydrogenase (LDH), needed for the conversion of pyruvate to

lactate in anaerobic glycolysis; total intramuscular lipase, important

for the uptake of fatty acids from circulating triglycerides (TAG)

in lipoproteins (e.g. chylomicrons and VLDL). Activities of CS

and COX were measured with a Beckman Coulter DU800 Series

spectrophotometer (Fullerton, CA, USA). Temperature was

maintained at 37°C using a Beckman Peltier Temperature

Controller. Activities of LDH, HAD and lipase were measured

with a BioTek Synergy HT Multi-Detection microplate reader

(Winooski, VT, Canada) at 37°C. The assay conditions were as

follows. LDH: 50mmol l–1 imidazole; 0.15mmol l–1 NADH, pH7.0

at 37°C; 1 mmol l–1 pyruvate; ΔA340, millimolar extinction

coefficient (�340)=6.22. HAD: 50 mmol l–1 imidazole, 1 mmol l–1

EDTA, 0.1 mmol l–1 acetoacetyl CoA, and 0.15 mmol l–1 NADH,

pH 7.0 at 37°C; ΔA340, �340=6.22. CS: 50 mmol l–1 imidazole;

0.25 mmol l–1 5,5�-dithiobis(2-nitrobenzoic acid) (DTNB);

0.4 mmol l–1 acetyl CoA; 0.5 mmol l–1 oxaloacetate, pH 7.5 at

37°C; ΔA412, �412=13.6. COX: 0.1 mmol l–1 DTT; 0.22 mmol l–1

ferrocytochrome-c, 10 mmol l–1 Tris-HCl pH 7.0 with 120 mmol l–1

KCl; A550 �550=21.84. Total lipase activity was determined using

a long-wavelength fluorescent assay kit from MGT Incorporated

(product M1214; Eugene, OR, USA). Specific enzyme activities

(μmol min–1 g–1 wet mass muscle) were calculated from the rate

of change of the assay absorbance at the maximal linear slope.

Aliquots from the supernatant after centrifugation were used for

myoglobin assays. Myoglobin aliquots were diluted with phosphate

buffer (0.04 mol l–1, pH 6.6) and the resulting mixture centrifuged

for 50 min at 28,000g at 4°C. As previously described (Kanatous

et al., 1999) the method of Reynafarje (Reynafarje, 1963) was

adapted and used to determine myoglobin concentration. In brief,

the supernatant was bubbled with 99.9% carbon monoxide (CO)

for 3 min to convert the myoglobin to carboxymyoglobin. The

absorbance of the supernatant at 538 and 568 nm was measured

using a Bio-Tek PowerWave 340x microplate reader. A myoglobin

standard (horse myoglobin, Sigma-Aldrich, St Louis, MO, USA)

was included with each set of samples. The myoglobin

concentrations were calculated as described previously

(Reynafarje, 1963) and expressed in mg g–1 fresh tissue.

Immunohistochemical fiber typing
Cross sections of each muscle sample were cut into serial thin

sections (7–9μm) with a Shandon cryotome (Waltham, MA, USA)

maintained at –20°C. Sections were placed onto glass slides, four

serial sections per slide. Transverse orientation was verified using

a standard light microscope. Fiber type distribution was determined

and verified utilizing two methods.

S. B. Kanatous and others
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In the first method, sections were stained using a metachromatic

ATPase staining protocol modified from (Ogilvie and Feeback,

1990). Briefly, the procedure was as follows: (1) ATPase pre-

incubation for 8 min (pH 4.5) at room temperature, (2) three 2-

min rinses in Tris buffer (pH 7.8), (3) incubation with ATP for

25 min (pH 9.4), (4) three calcium chloride rinses, (5)

counterstaining in 0.1% Toluidine Blue for 1 min, (6) dehydration

in ethanol and (7) clearing in xylene. The proportion of slow

oxidative (Type I), fast-twitch oxidative (Type IIA) and fast-twitch

glycolytic (Type IIB) fibers was determined by standard point

counting procedure and is presented as a percentage relative to

the total number of fibers. 

In the second method, slides were fixed in ice-cold

alcohol–formalin acetic acid fixative in a Coplin jar, washed with

PBS, and a proteinaceous blocking agent was applied to each

section to minimize non-specific antibody binding. A series of

monoclonal antibodies specific to myosin heavy chain isoforms

Type I, Type IIA and Type IIB was applied to one section on

each of the slides and incubated overnight in a humidity chamber

at 4°C. Serial amplification of the primary antibody was

accomplished using an incubation of biotinylated secondary

antibody for 20 min, followed by a series of PBS washes, followed

by a 20-min incubation with alkaline-phosphotase streptavidin

conjugate. After washing with PBS, Fast Red substrate or DAB

(3,3�-diaminobenzidine tetrahydrochloride) chromagen was

applied to the slides. When adequate color development was seen,

the slides were washed in water or a peroxidase to stop the

reaction. The slides were counterstained with Mayer’s

hematoxylin, washed in water, and a coverslip was mounted onto

the slide with Dako glycergel. A sample of approximately

200–400 artifact-free fibers showing good staining was counted

from each section using a camera-mounted microscope attached

to a PC loaded with BIOQUANT software (Bioquant, Nashville,

TN, USA). Fibers showing a reaction to a specific antibody were

considered to have that myosin heavy chain isoform. Percentages

of Type I, Type IIA, and Type IIB fibers were generated for each

sample (Kanatous et al., 2002). Since there were no differences

in the results from the metachromatic or immunohistochemical

staining techniques, the results for the metachromatic stain were

reported.

Western blot analysis to define the changes in the expression
of calcium regulatory and responsive proteins

Western blot analysis was performed according to a previously

published protocol (Garry et al., 1998; Wu et al., 2000) to determine

changes in the expression of proteins. Rabbit anti-myoglobin serum

(1:3000; DAKO, Carpenteria, CA, USA), mouse anti-calsequestrin

(1:1000; Affinity Bioreagents, Golden, CA, USA), mouse anti-

calcineurin B (1:250; Affinity Bioreagents), mouse anti-InsP3

(1:2000; Affinity Bioreagents) and mouse anti-SERCA2 ATPase

(1:2500; Affinity Bioreagents) were used as the primary antiserum,

which was detected using a horseradish peroxidase (HRP)-

conjugated secondary antiserum. Protein bands were visualized

using a chemiluminescent reagent (Pierce Supersignal reagent,

Rockford, IL, USA) and intensity was quantified using a

computerized digital analysis program (Scion Image 1.62c; Scion

Corp., Frederick, MO, USA).

Statistical analysis
Statistical analysis was performed by analysis of variance (ANOVA)

with Tukey post-hoc tests (P≤0.05, Sigmastat 2.0). Results are

presented as means ± s.e.m.

RESULTS
Age-related changes in fiber type population and

mitochondrial volume densities in swimming muscles
The results for the adults corroborate the studies we have previously

reported (Kanatous et al., 2002). The swimming muscles of adult

Weddell seals are composed of a mixed fiber type population

consisting primarily of slow-twitch oxidative fibers (Type I), fast-

twitch oxidative fibers (Type IIA) and a near absence of fast-twitch

glycolytic fibers (Type IIB) (Fig.1A). The total volume density of

mitochondria was also similar to previously reported values

(Kanatous et al., 2002) and comparable to sedentary terrestrial

mammals of similar body mass (Fig.2).

The fiber type results across the age classes showed a decrease

in Type I fibers with a significant increase in Type IIA fibers as the

animals matured (Fig.1A). These results are further corroborated

by the volume density of mitochondria analysis, which showed a

significant decrease as the seals matured (Fig. 1B; 9.3±0.5%,

6.7±0.4% and 3.0±0.2% for pup, juvenile and adult, respectively,

ANOVA P≤0.05). These results indicate that the aerobic potential

of pups and juveniles is significantly greater than that of adults and

similar to that of comparably sized athletic terrestrial mammals and

short-duration divers (Fig.2). To our knowledge, Weddell seals are

the first reported species where there is a shift from aerobic Type

Fig. 1. (A) The percentage of fast-oxidative fibers (Type IIA) increased
significantly in the swimming muscle as seals matured and increased their
dive durations. Histogram showing the change in fiber type composition
(% of total fiber number), in the swimming (longissimus dorsi) muscles of
Weddell seals as they mature. (B) The mitochondrial volume densities in
the swimming muscles decreased as the seals matured. Histogram
showing the decrease in the volume density of mitochondria in the
swimming muscle of Weddell seals as they mature. Values are means ±
s.e.m. (N=6). * denotes significantly different from the pups; † denotes
significantly different from adults (P<0.05, ANOVA).
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I fibers to an increase in Type IIA associated with a significant

decrease in mitochondrial density as the animals mature.

Age-related changes in myoglobin concentrations and
enzyme activities

The changes in the concentration of myoglobin revealed some

unexpected results. Myoglobin assays and western immunoblot

analysis (Figs3,4) revealed that juveniles had a significantly greater

concentration of myoglobin in their swimming muscles as compared

with both adults and pups (72.4±7 vs 55.9±2.5 and 35.5±3mgg–1

wet mass muscle, respectively). In addition, adult myoglobin values

were significantly greater than those in pups (Fig.3, 55.9±2.5 vs
35.5±3mgg–1 wet mass muscle; ANOVA, P≤0.05).

There were no significant differences in enzyme activities

between the pup, juvenile and adult for either of the aerobic enzymes

CS or COX (Table1). Although not statistically significant, LDH,

a marker of anaerobic capacity, tended to be higher in pups than in

either juveniles or adults. The pups had significantly higher HAD

activity (2.5�) (Table 1) and a greater lipase activity (1.5�)

(Table1) than either the juveniles or adults. There was no statistical

difference in any enzyme activity between the adult and juvenile

age classes. The CS:HAD ratio, an index of the contribution of fatty

acid metabolism to overall aerobic metabolism, was 0.3 in the

juveniles and adults and 0.1 in pups. This indicates a greater reliance

on fatty acid metabolism for the maintenance of aerobic metabolism

in pups than in either juvenile or adult seals.

Ontogenetic changes in the expression of calcium regulatory
and responsive proteins

Western blot gel electrophoresis showed that juvenile Weddell seals

had the highest levels of relative protein expression for all the

proteins. As seen previously with the myoglobin assay, the juveniles

had a significantly greater expression of myoglobin compared with

either the pups or adults (P<0.05). In addition, calcineurin, InsP3

receptor and SERCA2 ATPase were significantly greater (P<0.05)

in the juveniles and pups as compared with the adults (Fig.4).

DISCUSSION
The main finding of this study is that Weddell seal pups have higher

aerobic potential, as indicated by their significantly greater volume

density of mitochondria and percentage of Type I muscle fibers,

than either the relatively more active juvenile or adult seals.

However, this enhanced aerobic potential was not witnessed in the
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Fig. 3. The concentration of myoglobin in the swimming muscles of different
age classes of Weddell seals. The concentration of myoglobin was
significantly higher in the swimming muscles of juveniles compared with
either pups or adults. In addition, myoglobin concentration was also
significantly higher in adults compared with pups. Values are means ±
s.e.m. (N=6). * denotes significantly greater than pups; † denotes
significantly greater than adults (P<0.05, ANOVA).
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activity of key aerobic enzymes (citrate synthase and cytochrome

c oxidase) between the three age classes. By contrast, muscle

myoglobin concentrations were significantly lower in pups but

unexpectedly rose to significantly greater concentrations in the

juvenile seals than in any other age class. Another surprising result

was that, even though the concentration of myoglobin increased,

there was a decrease in Type I oxidative fibers and mitochondrial

volume densities along with a concomitant increase in Type IIA

oxidative fibers. To our knowledge, Weddell seals are the first

reported example where there is a shift from aerobic Type I fibers

towards an increase in Type IIA oxidative fibers with a significant

decrease in mitochondrial density as the animals mature. By

contrast, the locomotor muscles of precocial terrestrial mammals

are similar in mass (as a percentage of total body mass) and fiber

type composition across age classes (Cobb et al., 1994a; Cobb et

al., 1994b; Dearolf et al., 2000; Schutt et al., 1994).

The difference in Weddell seal skeletal muscle physiology

observed during this study may arise from the three very distinct

stages of their life history. During the first few weeks of life, Weddell

seal pups are a non-diving terrestrial mammal that must rely on

lanugo (natal fur) for thermoregulation in the extremely harsh

environmental conditions of Antarctica. Together with the

thermoregulatory benefits of lanugo, an increased aerobic capacity

may provide additional thermogenesis during lactation and weaning.

Juveniles possess low whole-body oxygen stores and hence

relatively poor diving capacity compared with adults (Burns et al.,

2005; Burns et al., 2007; Clark et al., 2006; Clark et al., 2007; Fowler

et al., 2006; Weise and Costa, 2007). This is reflected in both skeletal

muscle physiology and mean dive durations (Burns, 1996) that are

consistent with those of short-duration, shallower divers such as the

Steller sea lion (Fig.2). As juveniles continue to mature into elite

deep divers, their skeletal muscles are transformed to a more

sedentary state in order to maintain low levels of aerobic metabolism

under the hypoxic conditions associated with long-duration diving.

These results are in contrast to our original hypothesis, which

expected a shift towards more aerobic fibers as Weddell seals

matured and adapted to the hypoxic conditions associated with

prolonged diving.

An important and novel finding in our present study is that the

concentration of myoglobin is significantly higher in juveniles than

adults. Previous studies investigating body oxygen stores in diving

mammals have reported neonates with significantly lower total body

oxygen stores compared with adults. This suggests that increases

in oxygen stores are triggered by foraging (Burns et al., 2005; Clark

et al., 2006; Clark et al., 2007; Fowler et al., 2006; Weise and Costa,

2007). Our findings that the pups had significantly lower

concentrations of myoglobin and hence lower intramuscular stores

of oxygen compared with either the adults or juveniles support these

previous studies. The result that juveniles had increased myoglobin

concentrations when compared with adults has not been shown in

aquatic or terrestrial mammals. Although it has been reported that

juvenile seals have significantly shorter dive durations, they are

considerably more active swimmers than adults (Burns et al., 1999;

Call et al., 2007). Recent work in our laboratory has found that

hypoxia as a lone stimulus was not sufficient to induce the

expression of myoglobin in either cell culture or whole-animal

mouse studies. However, we found that hypoxia in combination with

exercise became a powerful stimulus for the induction of myoglobin

in skeletal and cardiac muscle (S.B.K., unpublished data). This

suggests that the elevated energetic activity underwater in

combination with breath-hold diving in juveniles may be the

stimulus for their greater myoglobin expression when compared with

adults. As the animals mature they employ energy-conserving modes

of locomotion and lower their energetic output during diving (Davis

et al., 1999; Kanatous et al., 2002) as myoglobin levels

simultaneously decrease. In other words, the expression of

myoglobin under hypoxic conditions is directly correlated to activity

level in both terrestrial and diving mammals.

In contrast to total body oxygen stores, which significantly

increase as these seals mature, the aerobic potential of the skeletal

muscle is significantly greater in the muscles of pups than in either

juveniles or adults. This would appear to be a paradox in that the

pups do not dive and are quite sedentary compared with the diving,

and therefore relatively more active, juveniles and adults. However,

we hypothesized that, as homeotherms, Weddell seal pups would

be under thermoregulatory stress in order to maintain a core

temperature of 37°C in an environment with temperatures ranging

between –10 and –40°C. Noren et al. recently observed that, although

pups had the greatest proportion of blubber among the three age

classes, their greater surface area to volume ratio and limited ability

to minimize body-to-environment temperature gradients lead to the

greatest calculated mass-specific heat loss (Noren et al., 2008). This

implies that immature seals rely on elevated metabolic heat

production to counter heat loss. This metabolic heat production is

also substantiated by fatty acid analysis among age classes of

Weddell seals, where levels of triglyceride-based fatty acids in the

skeletal muscle were greatest in pups (S.J.T., unpublished data).

Interestingly, it has been shown that acute exercise in humans is

accompanied by an increase in muscle triglyceride breakdown,

which increases whole-body fatty acid oxidation for up to 16h,

adding to overall heat production (Schenk and Horowitz, 2007).

Therefore, we believe that this partitioning of more fatty acids toward

triglyceride synthesis within locomotor muscles especially in pups,

can provide a foundation in which thermoregulatory demands can

be met. Moreover, the lack of enhanced aerobic enzyme activities

associated with the significantly greater mitochondrial volume

density and enhanced lipolytic enzyme capacities in the pups

suggests a metabolic uncoupling in favor of heat production through

non-shivering thermogenesis (Duchamp and Barre, 1993; Dulloo

et al., 2002; Solinas et al., 2004). We suspect that elevated

mitochondrial volume densities in the skeletal muscles of pups

potentially have a greater role in uncoupled non-shivering

thermogenesis (Blix and Steen, 1979; Blix et al., 1979; Grav and

Blix, 1979). As the animals mature, their heat loss to the environment

Table 1. Enzyme activities (i.u.g–1 wet mass muscle) in longissimus dorsi muscles of different age classes of Weddell seals

β-Hydroxyacyl 
Age class Citrate synthase Cytochrome c oxidase Lactate dehydrogenase CoA dehydrogenase Lipase

Pup (N=8) 23.8±6.3 3.8±0.9 1221.2±290 187.9±22.7 7.5±0.8
Juvenile (N=9) 25.3±5.9 2.4±0.4 899.2±256.5 74.4±10.8* 7.0±1.4
Adult (N=9) 25.3±2.8 2.0±0.3 894.5±312.1 74.0±10.5* 4.7±1.1*

Values are means ± s.e.m.
*Significantly different from pups (P<0.05).
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decreases, reducing the need for additional metabolic heat production

leading to an overall decrease in mitochondrial volume densities.

In an effort to unravel some of the underlying mechanisms

regulating the ontogenetic changes in Weddell seal skeletal muscle

physiology, we undertook western immunoblot analysis of selected

calcium regulatory proteins. It has been well established in terrestrial

animals that calcium signaling, as well as its downstream targets of

calcineurin and NFAT, plays an important role in determining fiber

type distribution, aerobic capacity and myoglobin concentrations in

skeletal muscles (Chin et al., 1998; Schiaffino et al., 2007;

Spangenburg and Booth, 2003). While numerous calcium regulatory

and sensitive proteins were tested, due to the unique nature of our

animal model our analysis was limited to those antibodies that gave

reliable and reproducible results (calcineurin B, calsequestrin, InsP3

receptor and SERCA2). As observed in terrestrial mammals, the

protein expression pattern of calcineurin B was similar to the

expression pattern of myoglobin (Chin et al., 1998). More

specifically, these patterns were significantly higher in the juveniles

compared with the adults. However, in contrast to the expression

of myoglobin, calcineurin B was not significantly different in the

pup but did show a trend toward being higher in the juvenile. These

changes in calcineurin may aid in the fiber type conversion that is

observed between the three age classes, but is not likely to be the

sole determining factor.

The expression of InsP3 receptor and SERCA2 in skeletal muscle

also shows an age-related pattern where pups and juveniles have

consistently higher expression levels than adults. With respect to

calsequestrin, we found no differences between the age classes in

the expression levels using western immunoblot analysis. These

findings are in contrast to that observed in terrestrial mammals where

an increase in InsP3 receptor, SERCA, ryanodine and calsequestrin

expression is observed between neonates and juveniles (de Jonge

et al., 2006; Eizema et al., 2007). While the significance of these

findings is limited on their own, the changes in these calcium

regulatory proteins provide some preliminary insight into the

regulation of calcium during the developmental changes within

Weddell seal skeletal muscle.

It has been shown that the regulation of fiber type in terrestrial

mammals is a combination of neural and molecular regulation and

is independent of oxidative capacity (Chin, 2005). While our results

support the hypothesis that there is a shift in fiber type population

due to an increase in aerobic capacity and mitochondrial volume

density as the animals become more active, our aquatically linked

model differs from the terrestrial system in that the fiber type shift

was associated with a significant decrease in mitochondrial density

and no change in aerobic enzyme capacity. This would serve to

decrease cellular and, in turn, overall metabolism necessary for

increased diving capacity in deep and long-duration divers while

maintaining the metabolic flux through the citric acid cycle in

response to chronically hypoxic episodes associated with long-

duration diving.

In addition to the results revealed here, we have successfully

isolated RNA from all of the age classes and transformed it into

cDNA for subtractive hybridization analysis. Our initial subtractions

between adults and pups have yielded over 20 transcripts that are

upregulated in the adult compared with the pup. In addition, the

transcripts identified from the subtraction correlate with our

physiological results. We have identified transcripts for myoglobin,

myosin heavy chain IIa, calcineurin, cytochrome c oxidase and

NADH dehydrogenase. The subtractive hybridization analysis

further corroborated our physiological analysis indicating that the

adults had a significantly greater percentage of fast-oxidative fibers

as well as myoglobin concentration. These initial findings also

suggest that some of the changes in physiology are regulated at the

transcript level, further supporting the role of the calcium/calcineurin

pathway in regulating the changes in mammalian skeletal muscle

even in diving mammals. While this analysis is far from complete,

we believe it is an important first step to be able to find transcripts

that are representative of the changes in mammalian physiology.

In summary, newborn Weddell seal pups have an extremely high

aerobic potential, with mitochondrial volume densities similar to

those found in terrestrial animal athletes and short-duration divers.

However, this enhanced aerobic capacity is not an adaptation

towards diving but is due to their high fat diet and the need to offset

thermoregulatory costs associated with the harsh environment of

Antarctica. As the young seals begin to dive and mature into

juveniles, their skeletal muscles begin to transform; as juveniles,

they initiate the development of fast-oxidative fibers and

S. B. Kanatous and others

Newborn pup Juvenile/novice diver Adult/elite deep diver

Calcineurin/NFAT Calcineurin/NFAT

High aerobic capacity to 
offset thermoregulatory costs

Myoglobin levels similar to 
short-duration divers

Aerobic capacity similar to 
large/short-duration divers

Extremely high myoglobin 
levels

Aerobic capacity similar to 
sedentary terrestrial mammals

Increased percentage of 
fast-oxidative fibers

High myoglobin levelsFig. 5. Summary reveals the ontogeny of skeletal muscle adaptations that enable long deep dives in Weddell seals. As newborn pups, Weddell seals have
an extremely high aerobic capacity, similar to that found in terrestrial animal athletes and short-duration divers. However, this enhanced aerobic capacity is
not an adaptation towards diving but is due to their high fat diet and the need to offset thermoregulatory costs associated with using their lanugo (natal fur)
for insulation in the extremely harsh environment of Antarctica. As the pups begin to dive and mature into juveniles, their skeletal muscles begin to
transform. As juveniles, they initiate the development of fast-oxidative fibers and significantly increase their intramuscular stores of oxygen in the form of
oxymyoglobin. As they continue to mature and increase their diving capacity, Weddell seals increase their percentage of Type IIA fast-oxidative fibers in
their skeletal muscles. In addition, their skeletal muscles transform to a more sedentary state in order to maintain low levels of aerobic metabolism under the
hypoxic conditions associated with long-duration diving. Similar to what has been found in terrestrial mammals; the results of our subtractive hybridization
analysis indicate that these changes in skeletal muscle metabolic potential are regulated by calcium signaling and its downstream mediator, calcineurin.
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significantly increase their intramuscular stores of oxygen in the

form of oxymyoglobin. As they continue to mature and increase

their diving capacity, Weddell seals increase their anaerobic capacity

by significantly increasing their percentage of Type IIA fast-

oxidative fibers in their skeletal muscles. In addition, their skeletal

muscles transform to a relatively more sedentary state in order to

maintain low levels of aerobic metabolism under the hypoxic

conditions associated with long-duration diving (Fig.5). The results

of this study also indicate that these changes in skeletal muscle

physiology are associated with changes in calcineurin expression.

In conclusion, the skeletal muscles of Weddell seals undergo a

unique transformation from a state of high aerobic potential, to offset

the thermoregulatory costs as pups, to lower aerobic potential as

adults in order to maintain the low levels of aerobic metabolism

associated with long-duration diving.
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