

Supplementary Figure 2

Temperature Control System. (A) Schematic of loading system with temperature control. 1. thermocouple 2. polished stainless steel compression platens 3. cartilage sample 4. immersion heater 5. solid state relay 6 . temperature controller. (B) Photograph of loading system with temperature control. (C) Validation data. The specimen bath was filled with media, and the temperature was ramped to either $23^{\circ} \mathrm{C}$ or $60^{\circ} \mathrm{C}$. Data were collected at steady-state temperature. The standard deviation of the temperature measurements was 0.0070 at $23^{\circ} \mathrm{C}$ and 0.0069 at $60^{\circ} \mathrm{C}$. These standard deviations are smaller than the bitwise resolution $\left(0.01^{\circ} \mathrm{C}\right)$ of the temperature controller. At steady state, the thermocouple was manually placed at multiple positions within the bath, and the temperature was found to be spatially-homogeneous (data not shown). During the heating phase between stress-relaxation tests, the temperature reached a peak of $63.1 \pm 0.1^{\circ} \mathrm{C}$ but dropped to a final steady-state value of $60.1 \pm 0.1^{\circ} \mathrm{C}$ by the beginning of the second stress-relaxation experiment.

Supplemental Figure 4

Substantial protein homology between bovine type I and type II collagen chains. The amino acid sequences of all known bovine type I and II collagen alpha chains (type I: $\alpha 1$ NP_001029211, $\alpha 2$ NP_776945. Type II, $\alpha 1$: Isoform 1 NP_001001135, Isoform 2 NP_001106695) were aligned using ClustalW2 ${ }^{1}$ and visualized using Jalview. ${ }^{2}$ Residues are highlighted when 3 or more are identical in the multiple alignment. Pairwise alignments using BLAST found amino acid identity of 69 and 73% between the $\alpha 1$ chain of type I collagen and isoforms 1 and 2 of the type II chain, respectively. Pairwise alignments using BLAST found amino acid identity of 64% between the $\alpha 2$ chain of type I collagen and both isoforms 1 and 2 of the type II chain, respectively.

[^0]
[^0]: ${ }^{1}$ MA Larkin et al, Bioinformatics 2007.
 ${ }^{2}$ AM Waterhouse et al, Bioinformatics 2009.

