Table S1. Summary of all metal measurements conducted in this study

			[Fe] mg/g		[Cu] mg/g		[Mn] mg/g		[Zn] mg/g	
DIET	GENOTYPE	N	VALUE	STDEV	VALUE	STDEV	VALUE	STDEV	VALUE	STDEV
Normal	white	16	0.203	0.044	0.014	0.005	0.027	0.019	0.066	0.012
	MvI	17	0.170	0.044	0.014	0.004	0.028	0.019	0.070	0.021
	мсоз	9	0.214	0.033	0.019	0.007	0.016	0.005	0.059	0.011
	MCO3, Mvl	9	0.197	0.048	0.014	0.005	0.016	0.007	0.062	0.010
1mM Fe	white	14	0.325	0.095	0.014	0.004	0.037	0.037	0.057	0.012
	MvI	13	0.335	0.119	0.015	0.007	0.042	0.036	0.063	0.020
	мсоз	6	0.346	0.055	0.016	0.006	0.016	0.007	0.055	0.015
	MCO3, Mvl	6	0.318	0.037	0.013	0.005	0.015	0.006	0.057	0.012
1mM Cu	white	13	0.144	0.029	0.194	0.048	0.030	0.013	0.055	0.014
	MvI	13	0.092°	0.023	0.183	0.036	0.029	0.008	0.050	0.012
	мсоз	6	0.132	0.027	0.127 ^b	0.021	0.021	0.009	0.054	0.014
	MCO3, Mvl	6	0.120	0.047	<u>0.118</u> ^b	0.017	0.027	0.012	0.056	0.010
1mM Mn	white	8	0.209	0.043	0.015	0.002	0.128	0.043	0.065	0.015
	MvI	7	0.152	0.049	0.015	0.005	0.133	0.049	0.068	0.021
	МСО3	3	0.214	0.075	0.020	0.002	0.153	0.042	0.056	0.000
	MCO3, Mvl	3	0.150	0.013	0.017	0.000	0.133	0.023	0.052	0.001
1mM Zn	white	7	0.185	0.051	0.017	0.009	0.030	0.026	0.210	0.048
	MvI	7	0.146 ^a	0.026	0.014	0.002	0.029	0.020	0.197	0.019
	МСО3	3	0.220	0.011	0.018	0.001	0.016	0.006	0.172	0.037
	MCO3, Mvl	3	0.189	0.021	0.016	0.001	0.012	0.001	0.186	0.042
1mM Fe+Cu	white	6	0.262	0.031	0.157	0.038	0.024	0.010	0.044	0.016
	MvI	6	0.282	0.062	0.162	0.018	0.031	0.008	0.048	0.013
	МСО3	5	0.289	0.069	<u>0.118</u> ^b	0.036	0.018	0.007	0.059	0.034
	MCO3, Mvl	5	0.229	0.038	<u>0.104</u> ^b	0.015	0.024	0.009	0.054	0.012
1mM Fe+Zn	white	9	0.390	0.101	0.016	0.005	0.025	0.016	0.168	0.064
	MvI	9	0.289	0.071	0.016	0.005	0.022	0.009	0.177	0.048
	мсоз	5	0.327	0.067	0.021	0.009	0.017	0.007	0.197	0.108
	MCO3, MvI	5	0.349	0.068	0.015	0.006	0.016	0.007	0.161	0.057
1mM Mn+Zn	white	3	0.191	0.011	0.017	0.003	0.169	0.031	0.182	0.028
	MvI	3	0.134	0.032	0.016	0.002	0.156	0.053	0.160	0.043
	МСО3	3	0.229	0.060	0.017	0.001	0.160	0.031	0.169	0.038
	MCO3, Mvl	3	0.152	0.028	0.018	0.001	0.124	0.025	0.139	0.030
	white	_	0.197	0.011	0.016	0.001	0.029	0.005	0.057	0.009
pooled average	MvI	-	0.157 0.151°	0.011	0.015	0.001	0.029	0.005	0.060	0.009
	MCO3	_	0.219	0.013	0.019 ^d	0.002	0.017°	0.007	0.057	0.002
	MCO3, Mvl	_	0.172	0.024	0.016	0.002	0.018°	0.002	0.056	0.002
	MOCO, WIVI		0.172	0.024	0.010	0.002	0.0.0	0.000	0.000	0.004

The number of biological replicates (N), average values (VALUE) and standard deviations (STDEV) are indicated for each condition. One-way ANOVA was performed for each metal in all eight treatments and for the pooled data. Superscript letters denote statistically significant results.

Different coloured text indicates the key findings:

Red: the average concentration of iron in $Mv^{\rho 7}$ mutants was lower than in w and $MCO3^{C359}$ mutants when no iron was added to the diet. The iron concentration was the same in $Mv^{\rho 7}$ and w mutants when the diet was supplemented with iron

Orange: When compared with w or $Mv^{\rho 7t}$ flies, the concentration of copper in $MCO3^{C359}$ mutants was higher, provided no copper was added to the diet. $Mv^{\rho 7t}$ loss of function rescued the aforementioned effect (i.e. $MCO3^{C359}$, $Mv^{\rho 7t}$ double mutants accumulated less copper than $MCO3^{C359}$ single mutants).

Brown: MCO3^{C359} and MCO3^{C359}, Mvl⁹⁷¹ mutants fed on copper accumulated less total copper than w flies.

Blue: $MCO3^{C359}$ mutants had a lower manganese concentration than w or Mv^{971} flies. Manganese concentration was comparable between all genotypes if the diet was supplemented with manganese.

Green: dietary copper reduced iron concentrations in all genotypes.

Background colours indicate that the measured metal was also supplemented in the diet.

aln two (out of five non-iron supplemented) treatments $Mv^{\beta 7 i}$ mutants show statistically significantly lower iron concentration than w and $MCO3^{C359}$ flies.

^bIn both treatments where copper was added to the diet, $MCO3^{C359}$ and $MCO3^{C359}$, $MV\ell^{P7I}$ flies accumulated less copper than w and $MV\ell^{P7I}$ mutants.

[&]quot;MVI⁹⁷⁴ mutants had a statistically significantly reduction in iron concentration compared with w and MCO3^{C359} flies but the value was not significantly different from that of the double mutant.

 $^{{}^{}d}MCO3^{C359}$ mutants had a statistically significant higher copper concentration than w and Mvl^{p7} flies; Mvl^{p7} loss of function rescues this phenotype.

[•]MCO3^{C359} and MCO3^{C359}, MvI^{97f} flies had a statistically significant lower manganese concentration than w and MvI^{97f} flies