Source \(l(y) \) – an angular distribution of radiances (W/m\(^2\)-steradian) for the entire scene

Spread function \(P(x,y) \) – the set of all points \(x \) on the membrane receiving radiation from source point at \(y \).

Image \(M(x) \) – a distribution of irradiances (W/m\(^2\)) over the pit membrane

Pit aperture - defines \(P(x,y) \)

\(\bullet \) A specific source point \(i \) at angular coordinates \(y \), with radiance \(l(y) \).

\(\bullet \) The conjugate image point to the specific source point at \(y \), located at angular coordinates \(x = y \), with irradiance \(M(x) \).

All computations are size-independent as they use angular coordinates (azimuth, elevation), \(x \) and \(y \).
The irradiance distribution image $M(x)$ is found by summing (integrating) contributions from all points y irradiating an image point at x_i, and repeating the summation for all points x.

\[M(x) = \bigwedge P(x,y) \ l(y) \ dy \]
Heat transfer processes convert irradiance distribution image $M(x)$ into temperature contrast image $T(x)$.

Receptor sensitivity converts the temperature contrast image $T(x)$ into the neural input image $D(x)$ that is transmitted to the brain via trigeminal nerve branches.