

Movie 1. Example of a hawkmoth (individual 7) flying into a steady airflow (without a cylinder) at 0.5, 1 and 2 m s⁻¹. Notice that the body oscillation amplitude and wingbeat flapping frequencies are barely affected under these conditions.

Movie 2. Example of a hawkmoth (individual 7) flying into a vortex wake 25 cm behind a 10 cm diameter cylinder at 0.5, 1 and 2 m s⁻¹. Notice how the abdomen amplitude and wingbeat frequencies increase with airspeed; and the synchronization between the vortex shedding (seen as the feather oscillation in front of and below the moth) and the body yaw oscillation.

Movie 3. Example a hawkmoth (individual 7) flying into a vortex wake at 5, 25 and 100 cm behind a 10 cm diameter cylinder in a 1 m $\rm s^{-1}$ flow. Notice that the wingbeat frequency and body oscillation amplitude decrease with downstream distance.

Movie 4. Example of a hawkmoth (individual 7) flying into a vortex wake 25 cm behind a 5 cm diameter cylinder at 0.5, 1 and 2 m s⁻¹. Notice that the body oscillation amplitude slightly increases with airspeed but without evident changes on wingbeat frequency. Also, observe the absence of synchrony between feather motion and body yaw.

Movie 5. Smoke visualization of a feather oscillation due to vortices generated by a 5 cm diameter cylinder in a 1 m s^{-1} flow. Notice that the feather oscillation movement is synchronized with the vortex shedding.

Movie 6. Smoke visualization of a moth (individual 8) flying 25 cm downstream vortex wake generated by 5 and 10 cm diameter cylinders at 1 m s⁻¹. Notice that vortices generated by the small cylinder interact only with one wing. In contrast, vortices generated by the large cylinder typically interact with both wings.