

Fig. S1. Recorded flight scores (0=failure, 1=lift, 2=flight) across the range of test temperatures as a function of $M_{_{\rm D}}$ (A,B), wing length (C-D), wing width (E-F), wing area (G-H), aspect ratio (I-J) and wing loading (K-L) in *Ceratitis capitata*.

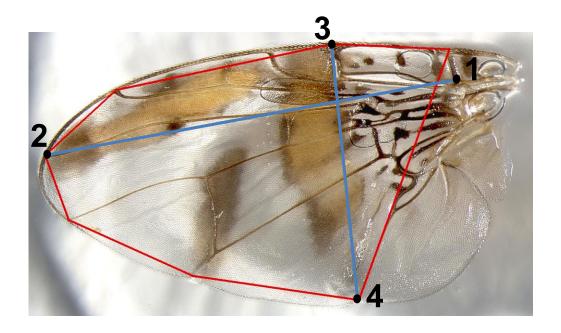


Fig. S2. Landmarks used for measuring the wing length (1 to 2), wing width (3 to 4) and wing area (red lines) of *Ceratitis capitata*. 1=anterio-anal corner of cell c; 2=termination of vein R_{4+5} , inner side of cell R_{2+3} ; 3=subcostal break (Scb); 4= A_1 +Cu $_2$ termination; and the red lines run between the anterio-costal corner of cell c, Scb, R_{2+3} , R_{4+5} , M, Cu $_1$ and A_1 +Cu $_2$ termination landmarks on the edge of the wing. These landmarks were present on wings from all individuals.

Publication: The Journal of Experimental Biology (US spelling)

Type: Research Article; Open Access: F; Volume: 217; Issue: 19 **Table S1.** Generalized linear models (GLZ) showing the effect of (A) Acclimation temperature (T_{acc}) and body mass (M_b); (B) T_{acc} and sex; and C) T_{acc} and flight score (0, 1 or 2, "Score") on aspect ratio (AR) and wing loading (WL) in Ceratitis capitata flies (M=males; F=females). AR was calculated as $2 \log(4R) - \log S$ and WL was calculated as $\log M_b - \log R$ (where R is length in mm and S is the wing area in mm²). Significant effects are highlighted in bold.

				Aspect Ratio		Wing Loading	
	Effect	Sex	DF	Wald χ^2	P value	Wald χ^2	P value
Α	Intercept	M	1	14482.29	<0.0001	3513.79	<0.0001
	T_{acc}		3	4.34	0.227	10.38	0.016
	M_b		1	1.02	0.312	1101.29	<0.0001
	$T_{acc} \ x \ M_b$		3	1.28	0.735	11.08	0.011
	Intercept	F	1	12268.60	<0.0001	4736.26	<0.0001
	T_{acc}		3	3.56	0.313	13.78	0.003
	M_b		1	0.43	0.511	1314.45	<0.0001
	$T_{acc} \; x \; M_b$		3	2.94	0.401	13.64	0.003
В	Intercept	All	1	961556.6	<0.0001	10970.69	<0.0001
	T_{acc}		3	54.3	<0.0001	14.58	0.002
	Sex		1	485.3	<0.0001	24.08	<0.0001
	T _{acc} x Sex		3	4.7	0.195	7.75	0.052
С	Intercept	M	1	396639.2	<0.0001	3536.81	<0.0001
	T_{acc}		3	32.2	<0.0001	13.87	0.003
	Score		2	1.2	0.561	4.27	0.118
	T _{acc} x Score		6	3.1	0.791	4.15	0.656
	Intercept	F	1	289790.0	<0.0001	3397.90	<0.0001
	T_{acc}		3	18.8	<0.001	4.22	0.239
	Score		2	0.3	0.867	1.66	0.435
	T _{acc} x Score		6	12.1	0.060	6.97	0.323