


Fig. S1. Physical and chemical conditions of Vietnamese Pangasius aquaculture ponds. Water partial pressure of carbon dioxide (P_wCO_2) (A), pH (pH_w) (B) and partial pressure of oxygen (P_wO_2) (C) at different depths of Vietnamese *Pangasianodon hypophthalmus* aquaculture ponds with 30-50 g fish (filled circles) and with 400-1000 g fish (empty circles). Data are means \pm s.e.m. (n=6).

Fig. S2.Verification of *PCO*² **and [HCO**³⁻] **from iStat.** A: Correlation between true *PCO*² in a blood sample and the *PCO*² measured by the iStat. Equation for linear least squares regression is P_aCO_2 (true) = 1.03 + 0.875 P_aCO_2 (iStat), $F_{1,16}$ =2992, P<0.001, r^2 = 0.99. Solid lines indicate the line for linear least squares regression and dotted lines indicate line of identity. B: Correlation between [HCO³⁻]_{plasma} measured using the method from (Cameron, 1971) and using the Henderson Hasselbach equation applying pH_e and P_aCO_2 from iStat, temperature compensated α_{CO2} from (Boutilier et al., 1985) and pH_e compensated p*K*. Equation for linear least squares regression is [HCO₃-]_{plasma} (iStat) = 0.56 + 0.95 [HCO₃-]_{plasma} (Cameron Chamber), $F_{1,81}$ =476, P<0.001, r^2 =0.85.