24 hour Fig. S1. Representative twog dimensional SDSg PAGE gel images from each of the seven treatment groups: Control, 0 hour, 3 hour, 6 hour, 12 hour, 18 hour and 24 hour. oteins are separated by isoelectric point (pl) (pH range 3-) ong the horizontal dimension and by relative molecular mass (M_r) ong the vertical dimension. Biorad owb range molecular weight standards were used for the ladder. The 115 spots selected for identification are outlined on each gel, and are labeled by spot number on the Control gel. ee Table S1 for further information on protein dentities. **Fig. S2.** Principal components analysis of 933 spots detected on twog dimensional gels using Delta2D software. Symbols represent individual mussels from the seven groups (black — ntrol; cyan — h; blue — h; yellow — h; green — h; orange — h; red — h). - A) PC1 vs. PC2. The first PC (horizontal axis) explains the greatest amount of variance among samples 15.2 , but does not clearly separate treatment groups. We interpret this to mean that when analyzing all 933 spots on the 2D gels, most variation in PEPs among mussels is associated with inter---individual differences not associated with recovery time. The second PC (vertical axis) explains 7.8% of variance and separates the 6 h and 12 h treatments from the other groups. - B) PC1 vs. PC3. The third PC explains 5.8% of total variance, and separates the 6 h group (positive oadings) from the 12 h group; - C) PC2 vs. PC3. The 6 h and 12 h groups are strongly separated from the other treatments. Compare with Fig. 2A, where the 6 and 12 h treatment groups show a similar separation when the analysis is limited to the 115 spots detected as differing significantly among groups by ANOVA. - D) PC3 vs. PC4. The fourth PC explains 4.8% of total variance, and separates the 24 h group from other treatments. Table S1. Proteins from *Geukensia demissa* gill isolated by 2D gel electrophoresis and identified by tandem mass spectrometry. Gray shading indicates protein spots that were contiguous on the 2D gels and had identical IDs, including Genbank accession numbers, and so were combined (i.e., the Delta2D software differentiated multiple spots when there was only one). Proteins with identical names and Genbank accession numbers that are listed in separate rows exist as discrete and non-contiguous spots on the 2D gels (see Fig. S1). Red text indicates protein spots that decreased in abundance significantly at the indicated time point relative to control (all others increased in abundance). If a protein was significantly different from control at multiple time points, it is listed under the first time point at which significance was reached. | Spot # ^a | Protein identification | Mowse
score ^b | # of
peptide
matches ^c | Genbank
accession.
version | Species ^d | E value ^e | Identity (%) ^f | pl ^g
(observed) | <i>M</i> r (kDa) ^g
(observed) | |---------------------|--|-----------------------------|---|----------------------------------|------------------------------|----------------------|---------------------------|-------------------------------|---| | A. Protei | in spots significantly incre | eased/decr | eased in abu | undance relative to o | ontrol at <u>0 hours</u> . S | See Fig. 3 for | expression profile | es. | | | 57 | Prohibitin | 182 | 5 | XP_012945186.1 | Haliotis
diversicolor | 1E-92 | 81 | 6.11 | 30.7 | | 78/79 | Voltage-dependent ion channel-2 (high pl) | 77/255 | 3/8 | ADI56517.1 | Haliotis
diversicolor | 2E-156/
1E-155 | 75/75 | 7.9/8.0 | 31.2/31.2 | | 77 | Voltage-dependent ion channel-2 (mid pl) | 147 | 5 | ADI56517.1 | Haliotis
diversicolor | 1E-155 | 75 | 6.9 | 31.4 | | 76 | Voltage-dependent ion channel-2 (low pl) | 213 | 8 | ADI56517.1 | Haliotis
diversicolor | 1E-155 | 75 | 6.7 | 31.5 | | 25/26 | Glyceraldehyde-3-
phosphate
dehydrogenase (high
pl) | 329/
152 | 9/4 | AEF33398.1 | Crassostrea
ariakensis | 2E-86/
6E-93 | 50/81 | 8.7/8.6 | 40.2/40.3 | | 22/27 | Glyceraldehyde-3-
phosphate
dehydrogenase (mid
pl) | 552/
483 | 15/14 | AEF33398.1 | Crassostrea
ariakensis | 0E+00/
0E+00 | 82/82 | 8.0/8.0 | 39.1/40.9 | | 23/24 | Glyceraldehyde-3-
phosphate
dehydrogenase (low
pl) | 64/96 | 2/3 | AEF33398.1 | Crassostrea
ariakensis | 4E-148/
4E-148 | 72/72 | 7.0/7.1 | 40.5/40.6 | | Spot # ^a | Protein identification | Mowse
score ^b | # of
peptide
matches ^c | Genbank
accession.
version | Species ^d | E value ^e | Identity (%) ^f | pl ^g
(observed) | <i>M</i> r (kDa) ^g
(observed) | |---------------------|---|-----------------------------|---|----------------------------------|------------------------------|------------------------------|---------------------------|-------------------------------|---| | B. Protei | in spots significantly incre | eased/decr | eased in abu | ındance relative to c | ontrol at <u>3 hours</u> . S | ee Fig. 4 for | expression profile | es. | | | 3/4 | 78 kDa Glucose regulated protein | 698/
831 | 19/24 | BAD15288.1 | Crassostrea
gigas | 0/0 | 88/90 | 4.9/5.0 | 71.6/72.1 | | 64 | Small heat shock protein 24.1 | 345 | 8 | AEP02968.1 | Mytilus
galloprovincialis | 6E-114 | 68 | 5.5 | 33.0 | | 49 | Peptidylprolyl cistrans isomerase (high pl) | 418 | 13 | EKC29243.1 | Crassostrea
gigas | 3E-118 | 90 | 6.8 | 28.9 | | 47/50/
51 | Peptidylprolyl cis-
trans isomerase (mid
pl) | 80/259/
413 | 3/6/16 | EKC29243.1 | Crassostrea
gigas | 3E-118/
3E-118/
3E-118 | 90/90/90 | 6.6/6.6/6.6 | 28.7/30.3/3
0.7 | | 48 | Peptidylprolyl cis-
trans isomerase (low
pl) | 551 | 18 | EKC29243.1 | Crassostrea
gigas | 3E-118 | 90 | 6.3 | 29.7 | | 58/59 | Protein deglycase DJ-
1 | 307 | 10 | EKC37254.1 | Crassostrea
gigas | 5E-70/
5E-70 | 67/67 | 6.8/6.9 | 17.1/18.4 | | 73 | Universal stress protein A-like | 260 | 9 | XP_011448812.1 | Crassostrea
gigas | 6E-20 | 82 | 7.9 | 14.4 | | 43 | Nacre protein (high pl) | 171 | 6 | BAK57311.1 | Pinctada fucata | 2E-14 | 31 | 7.0 | 23.9 | | 44 | Nacre protein (low pl) | 101 | 3 | BAK57311.1 | Pinctada fucata | 1E-22 | 31 | 6.6 | 24.6 | | 82 | mitochondrial H [†]
ATPase subunit α
(high pI) | 612 | 18 | EKC39329.1 | Crassostrea
gigas | 0E+00 | 88 | 7.3 | 55.4 | | 5 | mitochondrial H ⁺
ATPase subunit α (low
pl) | 93 | 2 | EKC39329.1 | Crassostrea
gigas | 2E-164 | 94 | 6.9 | 53.4 | | 6 | Actin 2 (high pl) | 725 | 22 | EKC38058.1 | Crassostrea
gigas | 0E+00 | 97 | 7.6 | 49.4 | | 7 | Actin 2 (low pl) | 180 | 5 | EKC38058.1 | Crassostrea
gigas | 0E+00 | 99 | 5.5 | 45.9 | | 18 | Actin 2 (low pI, high
Mr) | 759 | 27 | EKC38058.1 | Crassostrea
gigas | 0E+00 | 99 | 5.5 | 55.4 | | Spot # ^a | Protein identification | Mowse
score ^b | # of
peptide
matches ^c | Genbank
accession.
version | Species ^d | E value ^e | Identity (%) ^f | pl ^g
(observed) | Mr (kDa) ^g
(observed) | |---------------------|--|-----------------------------|---|----------------------------------|-------------------------------|----------------------|---------------------------|-------------------------------|-------------------------------------| | C. Protei | in spots significantly incre | eased/decr | eased in abu | ındance relative to c | ontrol at <u>6 hours</u> . Se | e Fig. 5 for ex | pression profile | es. | | | 55 | Peroxiredoxin-6 | 152 | 4 | ABO26614.1 | Haliotis discus | 2E-96 | 72 | 7.0 | 26.8 | | 45 | Nucleoredoxin | 80 | 1 | EKC27452.1 | Crassostrea
gigas | 2E-40 | 42 | 5.9 | 11.6 | | 72 | Dyp-type peroxidase (high pl) | 559 | 17 | EKC43063.1 | Crassostrea
gigas | 1E-109 | 71 | 6.5 | 34.4 | | 70/71 | Dyp-type peroxidase (low pl) | 223/
797 | 5/19 | EKC43063.1 | Crassostrea
gigas | 1E-
109/5E-97 | 71/71 | 6.0/6.1 | 34.3/34.4 | | 39 | NADP+-dependent isocitrate dehydrogenase (high pl) | 244 | 9 | AFI56373.1 | Mytilus trossulus | 0E+00 | 92 | 7.1 | 48.3 | | 40 | NADP+-dependent isocitrate dehydrogenase (low pl) | 364 | 10 | AFI56373.1 | Mytilus trossulus | 0E+00 | 92 | 6.9 | 48.3 | | 21 | Fructose bisphosphate aldolase | 281 | 6 | EKC30386.1 | Crassostrea
gigas | 0E+00 | 85 | 7.0 | 44.2 | | 65 | Triosephosphate isomerase | 143 | 5 | AEF33397.1 | Crassostrea
ariakensis | 3E-86 | 78 | 5.8 | 29.7 | | 41 | Malate
dehydrogenase,
mitochondrial | 621 | 15 | XP_005096166.1 | Aplysia
californica | 1E-140 | 70 | 5.7 | 40.7 | | 14 | Citrate synthase | 338 | 10 | EKC35491.1 | Crassostrea
gigas | 0E+00 | 77 | 7.1 | 52.0 | | 12 | Arginine kinase (high pl) | 437 | 11 | AGN95434.1 | Semisulcospira
libertina | 3E-176 | 73 | 7.2 | 44.6 | | 11 | Arginine kinase (low pl) | 488 | 10 | AGN95434.1 | Semisulcospira
libertina | 2E-179 | 73 | 6.8 | 45.7 | | 28 | Hemicentin-1 | 250 | 9 | EKC35524.1 | Crassostrea
gigas | 2E-20 | 36 | 6.1 | 23.5 | | 56 | Profilin-like | 455 | 10 | XP_005111300.1 | Aplysia
californica | 3E-04 | 28 | 5.6 | 14.1 | | 74/75 | Vitelline membrane outer layer protein 1 | 147/
341 | 6/11 | EKC25506.1 | Crassostrea
gigas | 2E-51/4E-
50 | 48/48 | 4.7/4.7 | 17.6/20.4 | |---------------------------|---|-------------------------------------|-----------------|------------|------------------------------|---|-----------------------|---------------------------------|---------------------------------| | 114/
116 | Putative C1q domain
containing protein
MgC1q96 (low Mw,
high pl) | 445/
592 | 9/18 | CBX41745.1 | Mytilus
galloprovincialis | 1E-52/
1E-52 | 52/52 | 5.2/5.3 | 20.5/23.5 | | 115 | Putative C1q domain
containing protein
MgC1q96 (high Mw,
low pl) | 310 | 7 | CBX41745.1 | Mytilus
galloprovincialis | 1E-52 | 52 | 5.0 | 26.8 | | 29/30/
32/34/
36/37 | Heterogeneous
nuclear
ribonucleoprotein
27C (high pI) | 171/15
8/174/1
41/117/
205 | 5/5/8/7/
4/6 | EKC41770.1 | Crassostrea
gigas | 6E-28/6E-
28/3E-
30/2E-
26/1E-
28/1E-27 | 67/67/67/59/6
0/67 | 8.8/8.7/
9.0/8.8/
8.7/8.7 | 4.4/4.7/
4.9/5.0/
4.6/5.2 | | 31/33/
35 | Heterogeneous
nuclear
ribonucleoprotein
27C (low pI) | 231/22
1/112 | 6/5/3 | EKC41770.1 | Crassostrea
gigas | 1E-28/8E-
28/1E-27 | 60/67/61 | 5.2/5.3/5.3 | 6.6/4.8/3.6 | | 42 | N(G), N(G)
dimethylarginine
dimethylamino-
hydrolase 1 | 128 | 2 | EKC40016.1 | Crassostrea
gigas | 1E-70 | 71 | 5.9 | 40.6 | | Spot # ^a | Protein identification | Mowse
score ^b | # of
peptide
matches ^c | Genbank
accession.
version | Species ^d | E value ^e | Identity (%) ^f | pl ^g
(observed) | <i>M</i> r (kDa) ^g
(observed) | | | | |---------------------|--|-----------------------------|---|----------------------------------|------------------------------|---------------------------|---------------------------|-------------------------------|---|--|--|--| | D. Protei | D. Protein spots significantly increased/decreased in abundance relative to control at 12 hours. See Fig. 6 for expression profiles. | | | | | | | | | | | | | 8/10 | Alcohol
dehydrogenase type 3
(high pl) | 413/
437 | 10/13 | EKC37227.1 | Crassostrea
gigas | 1E-60/
1E-60 | 58/58 | 6.6/6.7 | 44.0/44.0 | | | | | 9 | Alcohol
dehydrogenase type 3
(low pl) | 263 | 8 | EKC37227.1 | Crassostrea
gigas | 1E-60 | 58 | 6.3 | 44.3 | | | | | 67/68/
69 | Universal stress
protein-like isoform 2 | 178/82/
81 | 7/2/2 | AEF33379.1 | Crassostrea
ariakensis | 3E-26/
3E-26/
3E-26 | 37/37/37 | 7.0/7.1/7.1 | 14.7/14.9/
13.5 | | | | | 52 | Perlucin-like | 123 | 4 | P86854.1 | Mytilus
galloprovincialis | 1E-24 | 34 | 4.0 | 27.0 | | | | | 61 | Putative perlucin-4 | 146 | 4 | ABO26593.1 | Haliotis discus | 1E-20 | 38 | 4.4 | 17.0 | | | | | ⊆ | |----------------------------| | ö | | 0 | | # | | Ö | | | | = | | $\overline{}$ | | ō | | <u>~</u> | | _ | | - | | _ | | \sim | | ਰ | | | | | | - | | Ф | | | | ⊆ | | Φ | | 효 | | | | Q | | 5 | | | | S | | | | | | | | ≥ | | 6 | | 6 | | logy | | ology . | | iology | | ology . | | Biology | | al Biology | | tal Biology | | ntal Biology | | tal Biology | | ental Biology | | ntal Biology | | ental Biology | | rimental Biology | | erimental Biology | | erimental Biology | | erimental Biology | | xperimental Biology | | Experimental Biology | | f Experimental Biology | | Experimental Biology | | l of Experimental Biology | | al of Experimental Biology | | al of Experimental Biology | | l of Experimental Biology | | Spot # ^a | Protein identification | Mowse | # of | Genbank | Species ^d | E value ^e | Identity (%) ^f | pl ^g | <i>M</i> r (kDa) ^g | | | | |---------------------|--|--------------------|----------------------|------------|---------------------------|----------------------|---------------------------|-----------------|-------------------------------|--|--|--| | | | score ^b | peptide | accession. | | | | (observed) | (observed) | | | | | | | | matches ^c | version | | | | | | | | | | E. Protei | E. Protein spots significantly increased/decreased in abundance relative to control at <u>18 hours</u> . See Fig. 7 for expression profiles. | | | | | | | | | | | | | 13 | Cathepsin B | 67 | 2 | AEJ08755.1 | Crassostrea
ariakensis | 3E-162 | 70 | 6.6 | 32.8 | | | | | 20 | Flotillin-2 | 74 | 3 | EKC35912.1 | Crassostrea
gigas | 3E-158 | 70 | 7.6 | 55.2 | | | | | Spot # ^a | Protein identification | Mowse | # of | Genbank | Species ^d | E value ^e | Identity (%) ^f | pl ^g | <i>M</i> r (kDa) ^g | |---------------------|--|--------------------|----------------------|-----------------------|-----------------------------|----------------------|---------------------------|-----------------|-------------------------------| | | | score ^b | peptide | accession. | | | | (observed) | (observed) | | | | | matches ^c | version | | | | | | | F. Protei | in spots significantly incre | eased/decr | eased in abu | ındance relative to c | ontrol at <u>24 hours</u> . | See Fig. 8 for | expression profil | es. | | | 19 | Eukaryotic translation initiation factor 5A-1-like | 248 | 6 | XP_005094246.1 | Aplysia
californica | 4E-67 | 68 | 5.3 | 17.1 | | 2 | 5'-AMP-activated protein kinase subunit β-2 | 67 | 2 | EKC38929.1 | Crassostrea
gigas | 2E-21 | 56 | 3.7 | 79.8 | | 46 | Nucleoside
diphosphate kinase | 254 | 9 | AFK73702.1 | Ostrea edulis | 1E-64 | 84 | 8.3 | 14.1 | | 1 | 15-
hydroxyprostaglandin
dehydrogenase | 59 | 2 | EKC19471.1 | Crassostrea
gigas | 1E-55 | 55 | 4.9 | 29.2 | | 54 | Peroxiredoxin-5,
mitochondrial | 167 | 5 | EKC39509.1 | Crassostrea
gigas | 1E-77 | 77 | 7.7 | 16.5 | ^aSpot numbers correspond to spot labels on the gel images in Figure S1. ^bMolecular Weight Search score returned by Mascot. Scores above 45 indicate homology between the MS/MS peptides and the *G. demissa* EST entry (P<0.05). ^cNumber of non-overlapping peptides detected by MS/MS found in the *G. demissa* EST entry. If one spot matched more than one EST entry, and all EST entries matched the same Genbank sequence, this is the sum of peptides. ^dSpecies from which the most significant BLAST protein match was derived. BLAST searches were limited to molluscan nucleotide sequences. ^eE-value indicates the likelihood that the *G. demissa* EST entry matches the specified Genbank sequence by chance. ^fThe percent amino acid identity between the *G. demissa* EST entry and the specified Genbank sequence. ^gpl and Mr values were estimated by Mascot software based on location on the 2D gels.