Table S1. Set of generalised linear models explaining honeybees' spontaneous response towards any odour.

| Model                                    | K  | AIC    | $\Delta_{\mathrm{i}}$ | Wi   |
|------------------------------------------|----|--------|-----------------------|------|
| 1. Rearing environment*Age*Treatment     | 16 | 631.99 | 7.70                  | 0.01 |
| 2. Rearing environment + Age*Treatment   | 9  | 632.86 | 7.55                  | 0.01 |
| 3. Rearing environment*Age + Treatment   | 9  | 624.30 | 0                     | 0.46 |
| 4. Rearing environment*Treatment + Age   | 7  | 630.06 | 5.76                  | 0.03 |
| 5. Rearing environment + Age + Treatment | 6  | 628.90 | 4.61                  | 0.05 |
| 6. Age + Treatment                       | 5  | 626.95 | 2.65                  | 0.12 |
| 7. Treatment                             | 2  | 625.13 | 0.83                  | 0.30 |
| 8. Null                                  | 1  | 629.96 | 5.66                  | 0.03 |

K is the number of model parameters.  $\Delta_i$  is the difference in AIC between the model i and the most supported model (lowest AIC value),  $w_i$  is the Akaike weight of the model. Although model 3 has the lowest AIC value, model 7 was chosen as the minimal adequate model for making inference from the data as the gain in parsimony outweighed the loss in fit ( $\Delta_i = 0.83$ ).

Table S2. Set of generalised linear mixed effect models explaining honeybees' spontaneous response towards linalool and phenylacetaldehyde.

| Model                                 | K  | AIC    | $\Delta_{ m i}$ | Wi                   |
|---------------------------------------|----|--------|-----------------|----------------------|
| 1. RE*Age*Treatment*Odour + Bee       | 32 | 895.56 | 93.46           | 1.65e <sup>-21</sup> |
| 2. RE + Age*Treatment*Odour + Bee     | 17 | 847.98 | 45.88           | 3.55e <sup>-11</sup> |
| 3. Age + RE*Treatment*Odour + Bee     | 11 | 861.47 | 59.37           | 4.17e <sup>-14</sup> |
| 4. Treatment + RE*Age*Odour + Bee     | 17 | 862.46 | 60.36           | $2.54e^{-14}$        |
| 5. Odour + RE*Age*Treatment + Bee     | 17 | 868.49 | 66.39           | 1.25e <sup>-15</sup> |
| 6. RE + Age + Treatment*Odour + Bee   | 8  | 814.19 | 12.09           | $7.71e^{-04}$        |
| 7. RE + Treatment + Age *Odour + Bee  | 10 | 815.82 | 13.72           | $3.41e^{-04}$        |
| 8. RE + Odour + Age*Treatment + Bee   | 10 | 833.83 | 31.73           | $4.19e^{-08}$        |
| 9. RE + Age + Treatment + Odour + Bee | 7  | 812.70 | 10.60           | $1.63e^{-03}$        |
| 10. Age + Treatment + Odour + Bee     | 6  | 810.12 | 8.02            | $5.90e^{-03}$        |
| 11. RE + Treatment + Odour + Bee      | 4  | 807.09 | 4.99            | $2.69e^{-02}$        |
| 12. RE + Age + Odour + Bee            | 6  | 811.13 | 9.03            | $3.56e^{-03}$        |
| 13. RE + Age + Treatment Bee          | 6  | 810.13 | 8.03            | $5.87e^{-03}$        |
| 14. Treatment + Odour + Bee           | 3  | 805.09 | 2.99            | $7.30e^{-02}$        |
| 15. RE + Odour + Bee                  | 3  | 806.09 | 3.99            | $4.43e^{-02}$        |
| 16. RE + Treatment + Bee              | 3  | 805.09 | 2.99            | 7.30e <sup>-02</sup> |
| 17. RE + Bee                          | 2  | 804.09 | 1.99            | 1.20e <sup>-01</sup> |
| 18. Treatment + Bee                   | 2  | 803.09 | 0.99            | 1.98e <sup>-01</sup> |
| 19. Odour + Bee                       | 2  | 804.09 | 1.99            | 1.20e <sup>-01</sup> |
| 20. Bee (null)                        | 1  | 802.1  | 0               | 3.26e <sup>-01</sup> |

K is the number of model parameters.  $\Delta_i$  is the difference in AIC between the model i and the most supported model (lowest AIC value),  $w_i$  is the Akaike weight of the model. RE stands for rearing environment.

Table S3. Set of generalised linear models explaining honeybees' gustatory responsiveness.

| Model                                    | K  | AIC     | $\Delta_{ m i}$ | Wi                   |
|------------------------------------------|----|---------|-----------------|----------------------|
| 1. Rearing environment*Age*Treatment     | 16 | 2090,78 | 7.66            | 2.12e <sup>-02</sup> |
| 2. Rearing environment + Age*Treatment   | 9  | 2083.14 | 0               | 9.79e <sup>-01</sup> |
| 3. Rearing environment*Age + Treatment   | 9  | 2131.36 | 48.23           | 3.30 <sup>e-11</sup> |
| 4. Rearing environment* Treatment + Age  | 7  | 2129.11 | 45.98           | $1.02e^{-10}$        |
| 5. Rearing environment + Age + Treatment | 6  | 2117.51 | 44.37           | $2.27e^{-10}$        |
| 6. Age*Treatment                         | 8  | 2111.48 | 28.35           | $6.84e^{-07}$        |
| 7. Age + Treatment                       | 5  | 2155.48 | 72.34           | 1.91e <sup>-16</sup> |
| 8. Rearing environment                   | 2  | 2157.00 | 89.92           | $2.92e^{-20}$        |
| 9. Age                                   | 4  | 2173.05 | 84.04           | 5.50e <sup>-19</sup> |
| 10. Treatment                            | 2  | 2167.18 | 73.86           | $8.94e^{-17}$        |
| 11. Null                                 | 1  | 2157.00 | 101.89          | 7.35e <sup>-23</sup> |

K is the number of model parameters.  $\Delta_i$  is the difference in AIC between the model i and the most supported model (lowest AIC value),  $w_i$  is the Akaike weight of the model.

Table S4. Set of generalised linear models explaining honeybees' odour discrimination during the training phase of a classical PER conditioning.

| Model              | K | AIC    | $\Delta_{\mathrm{i}}$ | Wi                   |
|--------------------|---|--------|-----------------------|----------------------|
| 1. Age*Treatment   | 4 | 576.84 | 0                     | 0.99                 |
| 2. Age + Treatment | 3 | 590.28 | 13.44                 | $1.19e^{-03}$        |
| 3. Age             | 2 | 588.63 | 11.88                 | $2.60e^{-03}$        |
| 4. Treatment       | 2 | 588.72 | 11.79                 | $2.72e^{-03}$        |
| 5. Null            | 1 | 587.08 | 10.23                 | 5.89e <sup>-03</sup> |

K is the number of model parameters.  $\Delta_i$  is the difference in AIC between the model i and the most supported model (lowest AIC value),  $w_i$  is the Akaike weight of the model.

Table S5. Set of generalised linear models explaining honeybees' odour discrimination during the testing phase of a classical PER conditioning.

| Model              | K | AIC    | $\Delta_{\mathrm{i}}$ | Wi                   |
|--------------------|---|--------|-----------------------|----------------------|
| 1. Age*Treatment   | 4 | 206.66 | 0                     | 9.91e <sup>-01</sup> |
| 2. Age + Treatment | 3 | 225.16 | 18.51                 | $9.57e^{-05}$        |
| 3. Age             | 2 | 223.50 | 16.64                 | $2.43e^{-04}$        |
| 4. Treatment       | 2 | 223.30 | 16.84                 | $2.20e^{-04}$        |
| 5. Null            | 1 | 221.63 | 14.98                 | 5.59e <sup>-04</sup> |

K is the number of model parameters.  $\Delta_i$  is the difference in AIC between the model i and the most supported model (lowest AIC value),  $w_i$  is the Akaike weight of the model.