Figure S1. Schematic of bimodal respirometers designed to simultaneously measure pulmonary and cutaneous oxygen consumption by sea snakes (based on designs previously described by Dabruzzi *et al.* 2012), while also monitoring body acceleration using acoustic telemetry (VR100 and VR2W receivers). Four L-shaped respirometers (height 165 cm, width 80 cm) were constructed using transparent acrylic tubing (150 mm outer diameter) and opaque Polyvinyl chloride connector fittings. Respirometers were airtight and held a fixed amount of water (29.73 \pm 0.61 L) with a fixed air space (1.05 \pm 0.03 L) at the top to capture movements related to diving and surfacing. Chambers were large enough to allow snakes free movement, but small enough to accurately quantify $\dot{V}o_{2cut}$, with negligible gas exchange across the air-water interface. **Figure S2.** Raw oxygen traces for a representative sea snake illustrating the cutaneous oxygen consumption ($\dot{V}o_{2\text{cut}}$) at four temperature treatments (A) 21°, (B) 24°, (C) 27° and (D) 30°C. Background (microbial) respiration was measured at all temperatures and subtracted from sea snake $\dot{V}o_{2\text{cut}}$; a representative background trace at 30°C is presented (E). Grey shading represents periods when flush pumps were running. Red lines represent the measurements of change in oxygen concentration (ΔcO_2) measured during sealed cycles (Δt), as in equation 1 of the main text. **Figure S3.** Raw oxygen traces for a representative sea snake testing the pulmonary consumption of oxygen at four temperature treatments; (A) 21° C, (B) 24° C, (C) 27° C and (D) 30° C. Each drop in oxygen concentration along the trace represents one breathing bout, with breathing rate increasing in warmer waters. Fixed volumes of N_2 (40, 20, 10 and 5 ml) were injected during periods between snake breathing bouts (E – H) to provide reference points for the magnitude of the snake breathing bouts.