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ABSTRACT
Accessing many fundamental questions in biology begins with
empirical estimation of simple monotonic rates of underlying
biological processes. Across a variety of disciplines, ranging from
physiology to biogeochemistry, these rates are routinelyestimated from
non-linearandnoisy timeseriesdatausing linear regressionandadhoc
manual truncation of non-linearities. Here, we introduce the R package
LoLinR, a flexible toolkit to implement local linear regression techniques
toobjectivelyand reproduciblyestimatemonotonic biological rates from
non-linear time series data, and demonstrate possible applications
using metabolic rate data. LoLinR provides methods to easily and
reliably estimate monotonic rates from time series data in a way that is
statistically robust, facilitates reproducible research and is applicable to
a wide variety of research disciplines in the biological sciences.
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INTRODUCTION
Living organisms, the communities they form and the environments
they inhabit are all temporally dynamic systems. Consequently, many
fundamental questions in biology begin with estimating the rates of
underlying biological processes. When non-linearity is of biological
interest and accurately represents the rate of interest, then non-linear,
function-valued approaches may be most appropriate (Marshall et al.,
2013; Stinchcombe et al., 2012). Non-linear approaches can be
further generalized using function regression if the question also
requires accounting for change in parameters as a function of other
variables (Yen et al., 2015). However, in many cases, there is a
putatively linear rate that we wish to estimate free of artifactual non-
linear regions (e.g. Fig. 1). In these cases, researchers often reduce
experimental complexity by holding state variables constant in order
to estimate monotonic rates, which are then used in subsequent
analyses. For example, the metabolic theory of ecology (MTE) seeks
to explain ecological patterns by scaling the size dependence and
temperature dependence of metabolic rates from individuals to
ecosystems (Brown et al., 2004; Gillooly et al., 2001). The study of
MTE therefore beginswith estimates ofmetabolic rate at standardized
temperatures (e.g. Barneche et al., 2014; Brown et al., 2004; Gillooly
et al., 2001; White et al., 2011a,b). Similarly, predicting the impacts
of climate change on ecosystem processes, such as community
primary productivity, begins with estimates of O2 production rates
(Tanaka et al., 2013; Yvon-Durocher et al., 2015). Other examples

include estimates of leaf respiration rate (Shapiro et al., 2004),
ecosystem functioning (Ross et al., 2013), and components of
biogeochemical cycles including denitrification (Song et al., 2011),
CO2 and CH4 gas emissions (e.g. Larmola et al., 2013). Thus,
accurate estimates of biological rates provide the foundation for
many branches of biology but, surprisingly, there are few systematic
approaches to estimating monotonic rates from biological data.

Biological rates are routinely estimated from non-linear or noisy
time series using linear regression. For example, many studies in
physiology, ecosystem ecology and biogeochemistrymonitor reactant
consumption in closed chambers at standardized temperatures, and
use the resulting, often non-linear, time series to estimate the rate of
interest (e.g. Larmola et al., 2013; Ross et al., 2013; Song et al., 2011;
Tanaka et al., 2013; White et al., 2011a,b; Yvon-Durocher et al.,
2015). There are several problems with this approach. First, the data
used rarely meet the criteria for linear regression to be an appropriate
analytic tool. The first measures in a time series are often noisy as
equipment/samples/organisms equilibrate after setup, while at the end
of the time series, rates can change because of saturation effects or the
exhaustion of a limiting resource (e.g. Fig. 1). Consequently, naive
linear regression of a full time series can conflate the biological rate of
interest with undesired effects. Second, common ad hoc methods to
ameliorate this problem, such as manually truncating non-linear
portions of the time series, introduce subjectivity into the analysis, and
may reduce statistical power by removing useful data. Last, published
studies rarely provide both the raw data and the specific methods
necessary to reproduce reported results. This makes it difficult or
impossible to evaluate the appropriateness of the methods, and is
particularly problematic in a new era that demands scientific
transparency and reproducibility (Fang et al., 2012; Grieneisen and
Zhang, 2012). The need to estimate monotonic rates from time series
data will only increase as technological advances continue to make
collectionofhigh-resolution data easyand cost effective.This presents
biologists with a non-trivial challenge: to reliably estimate biological
rates in a way that is statistically robust and fully reproducible.

Here, we introduce the LoLinR package for R (R Development
Core Team, 2016), which provides a suite of simple functions to
implement local linear regressions to estimate monotonic rates from
time series data. We describe the general approach to reproducible
and statistically robust estimation of monotonic rates, and the
specific methods used in the package. We then walk through two
example analyses to illustrate the utility of the package, as well as
important analytic considerations and pitfalls (all computer code
necessary to reproduce the analyses and figures in this article are
available in Scripts S1 and S2; additional examples are available
through https://github.com/colin-olito/LoLinR).

MATERIALS AND METHODS
We first describe the base function aroundwhich the LoLinR package
is built, then detail the component linearity metrics underpinning the
function. The methods provided in the LoLinR package are aReceived 26 August 2016; Accepted 14 December 2016
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modification of traditional Loess regression techniques built around
the wrapper function rankLocReg. While Loess techniques are
designed primarily for data interpolation and visualization,
rankLocReg stores relevant data from all possible local regressions
of ordered subsets (adjacent points) of a full time series, given a
minimum window size. The function returns an object of class
rankLocReg, which includes a ranked list of the most linear subsets of
the data, as well as corresponding data for each local regression. A call
to rankLocReg implements three steps: (1) define the minimum
window size, (2) fit local regressions and (3) rank local regressions.
The only user-defined constraint imposed on the analysis is

alpha, which defines the minimum window size used to fit local
regressions, expressed as a proportion of the total number of
observations in the full data set (analogous to a traditional Loess
smoothing parameter). At a minimum, alpha must take into account
the total number of observations in the full data set, N, such that
(alpha×N )≥15 (Harrell, 2001). Ideally, (alpha×N ) should also
represent a biologically meaningful interval for the given data set. A
call to rankLocReg fits all possible local regressions with
n≥(alpha×N ) adjacent observations using ordinary least squares.
To quantify linearity for each of the local regressions, we define

the combined linearity metric L, which represents aweighted sum of
three component metrics. The first metric is the skewness of the
standardized residuals for the local regression, estimated as the
Fisher–Pearson standardized third moment coefficient:

S ¼ n

ðn� 1Þ � ðn� 2Þ �
X x� �x

sðxÞ
� �3

" #
; ð1Þ

where σ(x) is the sample standard deviation of x. The second metric
is the range of the 95% confidence interval (CI) for the slope of the
local regression β1:

CI range ¼ b1 þ t�0:975 �
sffiffiffi
n

p
� �

� b1 � t�0:025 �
sffiffiffi
n

p
� �

; ð2Þ

where σ is the sample standard deviation and n is the number of
observations used in the local regression, and the asterisks indicate
the ‘critical’ t-values associated with the 97.5th and 2.5th
percentiles. The third and final metric is a modified Breusch–
Godfrey statistic:

R2
BG ¼ nR2

n
; ð3Þ

for serial correlation of the standardized residuals of the local
regression up to order (n−k−1) (where k is the number of parameters
in the fitted model – usually 2). We divide the traditional nR2

Breusch–Godfrey statistic by n to remove the multiplicative effect of
sample size. We do this because we wish to compare the variance
explained by local regressions with different sample sizes, rather
than perform a significance test for an asymptotically x2d:f :¼n
distributed variable with fixed sample size n. It is also possible to
account for autocorrelation using generalized linear models with a
specified correlation structure. However, the R2

BG metric accounts
for serial correlation up to the maximum lag of (n−k−1) inclusive,
and does not require additional assumptions made by alternative
correlation structures. Each of the three component metrics, x, are Z
standardized against the minimum value (or minimum absolute
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Fig. 1. Schematic diagram showing a typical LoLinR workflow, as well as how using LoLinR to estimate biological rates would fit into an experimental
project workflow. In this example, O2 saturation data are being used to estimate metabolic rate for an individual sea urchin (Heliocidaris erythrogramma; C.O.
and D.J.M., unpublished data). The putatively linear region of interest occurs after equipment equilibration, but before the urchin begins to show physiological
responses to declining oxygen. Crucially, any estimate made using LoLinR can be easily reproduced from two pieces of information: (1) the raw time series data,
and (2) LoLinR plots or summary tables or the R code used to implement the analysis. Each of these can be very easily compiled into appendices for published
studies, making LoLinR analyses very easy to reproduce.
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value for S) obtained from all i fitted local regressions as:

Zmin½xi� ¼ xi �minðxÞ
sðxÞ ;

ZminðabsÞ½xi� ¼ xi �min(absðxÞÞ
sðxÞ ;

ð4Þ

where σ is the sample standard deviation, ensuring that all
component metrics have a common scale, and smaller values of
each correspond to greater linearity of the associated local
regression. Thus, the combined linearity metric without any
further weighting of the component metrics is defined as:

LZ ¼ ZminðabsÞ½S� þ Zmin½CI range� þ Zmin½R2
BG�: ð5Þ

LZ implicitly weights the contributions of each component metric by
the relative magnitudes of their empirical variances for a given data
set. For the many cases where the empirical distributions of the
component metrics differ, we define and strongly recommend two
alternative weighting methods: Leq and L%. Leq enforces equal
weights by dividing the Zmin scores for each metric by their
maximum value before summing. L% sums the percentile-ranks of
the Zmin scores for each component metric. The choice of weighting
method will ultimately depend on the specific characteristics of each
data set, the alpha value used for the rankLocReg analysis, and the
biology of the system being studied.

When used with rankLocReg objects, the plot function generates
several diagnostic plots to help determine themost appropriate method
for a given analysis. Users can examine results from alternative L
metrics by using the reRank function. Fig. 1 provides a schematic
overview of a typical workflow using LoLinR to estimate biological
rates. Crucially, analyses using LoLinR can be fully reproduced from
(1) the time series data and (2) anyoneof the following: summaryplots,
summary tables or the R code used to perform the analysis. All are
easily included as appendices or supplementary material to published
articles, making LoLinR analyses extremely easy to reproduce.

RESULTS AND DISCUSSION
Larval metabolic rate
The first example is from a study of allometric scaling of metabolic
rate during larval development in two bryozoan species (Bugula
neritina and Watersipora subquortata; Pettersen et al., 2015).
Metabolic rate was estimated for individual larva from O2 saturation
time series collected using closed chambers. Fig. 2A provides an
example of the analytical challenge presented by these data. The full
time series is clearly non-linear: the rate of O2 consumption initially
decelerates as the chamber and larva equilibrate after handling.
There is also a subtle acceleration towards the end of the time series,
probably resulting from a physiological response by the larva to
declining O2 availability (Lagos et al., 2015), or accumulation of
bacterial biofilm that began to consume oxygen. Any estimate of O2

consumption rate including these non-linearities would be conflated
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Fig. 2. Diagnostic plots generated by the plot command for the L% rank 1 local regression for theBugula larva respiration time series data.Data are from
Pettersen et al. (2015). The output plots show: (A) the full time series, with the rank 1 local regression highlighted in blue, along with the associated regression
equation and number of observations; (B) standardized residuals for the chosen local regression, regressed against the predictor variable (time in seconds for the
Bugula data set); (C) standardized residuals regressed against the fitted values; (D) density plot with empirical distribution of local regression slopes (β1),
benchmarked against the slopes of the rank 1 local regressions for each L metric; (E) normal–quantile–quantile plot for the rank 1 local regression; and (F) a
histogram of the distribution of the standardized residuals for the rank 1 local regression.
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with these other processes. However, truncating the data to exclude
these non-linearities is subjective and difficult, especially for the
subtle curvature towards the end of the data set. Ultimately, we wish
to identify the region where the relationship between O2

concentration and time is most linear, and estimate its slope.
Using theLoLinRpackage,we can analyse this data setwith thecall:

library(LoLinR)
data(BugulaData)
BugulaRegs <− rankLocReg(
xall=BugulaData$Time.s, yall=BugulaData$D1,
alpha=0.2, method=“eq”)

which implements the rankLocReg function with a minimum
window size of alpha=0.2, and uses the linearity metric Leq to rank
local regressions. This alpha value results in a minimumwindow size
of (alpha×N )=22 for this data set. This call returns an object of class
rankLocReg which includes a ranked list of all possible local
regressions, the number of local regressions fitted and several
summary statistics. Examination of the summary output and the
distribution of local regression slopes (Fig. 2D, density plot)
indicates that both the LZ and Leq weighting methods return the
same rank 1 local regression, while the L% method returns a slightly
different result. However, all three methods identify local regressions
in the later half of the time series, where the rate of O2 consumption
has stabilized. The L% rank 1 local regression includes a larger subset
of the data (n=44 observations) than the other two methods (n=26),
and all three rank 1 local regressions have nearly identical slopes (LZ,
Leq: β1=−0.00133; L%: β1=−0.00132). Given the similarity of the
results, we would recommend using the L% method in this case,
because it provides greater statistical power for the estimation of β1,
the parameter of interest. Inspection of the chosen local regression
and accompanying residual plots also suggests that other than some
autocorrelation, which is expected in time series data, there are no
other major concerns (Fig. 2C–F).
A comparison of this result with common alternative approaches

highlights the usefulness of the methods. Naive linear regression of
the full time series yields an estimate of β1=−0.00119, indicating
that non-linearities, particularly early in the time series, result in
under-estimation of the metabolic rate. Estimates obtained by linear
regression of manually truncated subsections of these data (with the
same window size of n=22 observations) can range from β1=
−0.00212 to β1=−0.00067, more than a threefold difference in the
estimate of metabolic rate. In addition to being methodologically

opaque and conflating the desired rate with other experimental and
biological processes, these common ad hoc methods can give
highly inaccurate estimates.

Flow-through respirometry
The second example is a study of the metabolic costs of living in the
Arctic for great cormorants (Phalacrocorax carbo) (White et al.,
2011a). In this study, metabolic rate was estimated for individual
birds using flow-through respirometry protocols (see supplementary
material in White et al., 2011a). These techniques generate time
series of the rate of O2 consumption (V̇O2

, ml O2 kg
−1 min−1) rather

than O2 saturation or concentration. For these data, the analytic goal
was to estimate resting metabolic rate, which should correspond to
the subset of the time series where V̇O2

is lowest and most linear.
Conventional methods for estimating V̇O2

from flow-through
respirometry data are based on analysis of the distribution of
sequences of adjacent data points, and the minimum running
average of subsets of adjacent points with varying numbers of
included observations (e.g. Withers, 2001). Here, we illustrate how
rankLocReg can be used to estimate resting metabolic rate from
these data by leveraging the statistical framework of local linear
regression and examining the distribution of standardized residuals.

We analyse a representative V̇O2
time series for an individual

cormorant. The time series is non-linear with large spikes occurring
when the animal is physically active inside the chamber, but there
appears to be a region of relative stability between 2.5 and 5.25 h
(Fig. 3). We analyse the thinned data with a call to rankLocReg
using alpha=0.1. This ensures that the minimum window size
corresponds to approximately 30 min, and a minimum of 15
observations for the local regressions. Although we are not
necessarily interested in the slopes of the local regressions (β1), an
examination of the distribution of β1 highlights the fact that the L%
metric returns a different rank 1 local regression from the other two
L metrics (Fig. 3A). For these data, the LZ and Leq metrics
misidentify the most stable subset of these data (a consequence of
strongly skewed empirical distribution of R2

BG ) (Fig. 3B; Fig. S1).
However, L% identifies a period of approximately 2 h where V̇O2

is
most stable (Fig. 3C). The average (or median) V̇O2

during this
period is easily recovered using the summary for this analysis, and
returns an estimate of V̇O2

. This estimate is similar to those obtained
using conventional methods (V̇O2

=33.90 and 35.57 ml kg−1 min−1;
Fig. S2; see Withers, 2001, for detailed methods), as well as the
median of the full time series (36.71 ml kg−1 min−1), but has two
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distinct advantages. First, the L metrics provide an objective
measure of linearity to identify periods of stability in the V̇O2

time
series. Second, the Lmetrics do not preferentially select the smallest
possible subset of the time series to estimate resting metabolic rate,
resulting in an estimate that is based on more observations, and
therefore has more statistical power (n=47 using LoLinR; n=11 or
18 using conventional methods).

Appendix
Quantifying LoLinR performance using simulated data
An informative comparison between the methods provided in
LoLinR and common alternatives is deceptively difficult for at least
two reasons. First, the most common alternative methods (e.g.
eyeballing the data to select a linear region and then running a linear
regression, or the methods described in Withers, 2001) simply
cannot be reliably compared with LoLinR because they are not
objectively reproducible. Second, generating appropriate simulated
data for the types of analyses LoLinR is designed to assist with (i.e.
where some subset of a time series is indeed linear, or expected to be
linear, but the rest is arbitrarily non-linear) is a non-trivial problem.
This is particularly problematic when the specific nature of the non-
linearity has a strong influence on the behaviour of the methods that
LoLinR might be compared against (e.g. naive linear regression of
full data sets). As a first step towards providing objective validation
and comparison of our methods, we provide functions to generate
simulated data and analyse the performance of rankLocReg (see
Script S1). However, we emphasize that this is not a comprehensive
sensitivity analysis, but rather a starting point for validating our
methods and making future comparisons with other reproducible
methods. Here, we briefly describe how simulated data were
generated, and how the performance of rankLocReg was assessed.
Wegenerated simulateddata that roughly resembleO2consumption

data (similar to the ‘Larval metabolic rate’ example in Results and
Discussion), with an initial phase of acceleration/deceleration which
then stabilizes as a straight line. Simulated data sets are composed of
100 observations. The first 50 observations are non-linear, following a
sinewave from the apex (or trough) at ±π/2 to the inflectionpoint at ±π.
The second50observations are linear, following y=β0±xβ1,where β0 is
equal to the 50th observation (the last of the non-linear subset), and the
regression slope is uniformly distributed on the intervals β1∈[−0.028,
−0.004] ∪ [0.004, 0.028]. We add a small amount of normally
distributed noise to the entire data set [ε∼N(0, 0.05)] to simulate
random variation present in real-time series data. We analyse each
randomly generated data set using rankLocReg, with alpha=0.2.
To quantify the performance of rankLocReg, we use three simple

metrics. (1) The difference between the actual slope of the linear
subset of the simulated data and the slope of the local linear
regressions identified by rankLocReg (Δi=βi−βreal), where i
indicates each of the L methods used by rankLocReg (i∈[Z, eq,
%]). As each of the three Lmetrics performs differently for different
data sets, we also compare the difference between the real regression
slope and the best of the three local regressions identified by
rankLocReg (i.e. the one with the smallest Δi), which we designate
Δbest. (2) The proportion of the linear subset of the data that is
correctly included in the local linear regressions identified by
rankLocReg. (3) The proportion of the observations included in
local linear regressions that correctly include the linear subset of
the data.

Results summary
For this particular type of simulated test data, rankLocReg performs
remarkably well, particularly in comparison with a naive linear

regression of the full data sets. The result of this specific comparison is
not surprising, however, as the curvature in the first half of the
simulated data results in systematic bias of βnaive towards 0. This is
reflected in Fig. S3A, where the distribution of Δnaive is right skewed
with a thicker tail than the distribution of Δbest. In contrast, Δbest is
tightly distributed about 0, with a few outliers in the right tail. Each of
the three L metrics performs similarly, although the local regressions
identified using the L% methods are generally better at recovering
regression slopes that aremore similar to βreal (Fig. S3B). As expected,
the absolute values of βreal also influence the performance of
rankLocReg. Overall, rankLocReg performs better when βreal is
further from0 (Fig. S3C). Specifically, when βreal is negative but close
to 0, rankLocReg tends to choose regressions that include the non-
linear portion of the data, with slopes that are more steeply negative
than βreal. When βreal is positive but close to 0, rankLocReg tends to
choose local regressionswithmore steeplypositive slopes thanβreal for
the same reasons. This behaviourmakes sense because the 95%CI for
β1 is used to calculate the L metrics used by rankLocReg, which
becomes increasingly inflated as βreal approaches 0.

rankLocReg also does a reasonably good job of correctly
identifying the truly linear subset of these simulated data. This is
encouraging, particularly because the curvature of the simulated
data in this example should make this rather difficult. This is
because the second half of the non-linear portion of the simulated
data is increasingly linear (with a slope of β1≈±0.016 on the x-scale
used for this analysis) as they approach the inflection point of the
sine wave at ±π. Thus, it should be difficult for rankLocReg to
distinguish between the end of the non-linear subset of the data and
the truly linear subset. However, at least one of the L methods
implemented by rankLocReg (i.e. the ‘best’ local regression with
the smallest Δ value) generally included a large fraction of the truly
linear subset of the data (Fig. S3D). However, there was quite a bit
of variability in the performance of each of the L methods (Fig.
S3E). The LZ and Leq methods in particular either performed very
well or very poorly at identifying the truly linear subset of the data.
In contrast, the L% method generally identified at least half of the
truly linear subset (Fig. S3E). The ability of rankLocReg to
correctly identify the truly linear subset of the data was again
sensitive to the absolute value of βreal. Specifically, even the ‘best’
local regression mis-identified the truly linear subset more
frequently as βreal approached 0 (Fig. S3F).

rankLocReg also performed well at identifying local regressions
that correctly include the truly linear subset of the data. For a large
majority of simulated data sets, more than half of the observations
included in the ‘best’ local regression identified by rankLocReg
were part of the truly linear subset of the data (Fig. S3G). However,
there was again significant variability in the performance of each of
the three L methods (Fig. S3H). The L% method clearly performed
the best in this respect, generally choosing local regressions with the
majority of observations falling within the truly linear subset of the
data (Fig. S3H). However, the LZ method generally performed very
poorly, choosing local regressions that badly mis-identified the
linear subset of the data, or choosing local regressions of which only
half of the included observations were actually part of the truly
linear subset (Fig. S3H). The Leq method also performed poorly,
but was better at identifying local regressions, with the majority
of observations falling within the truly linear subset of the data
(Fig. S3H). Once again, the performance of even the ‘best’ local
regression becameworse as βreal approached 0. The variability in the
performance of the three L methods is almost certainly a direct
consequence of the difficulty in distinguishing between the end of
the non-linear and the beginning of the linear subsets of these
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simulated data. This is particularly clear for L%, which often
identified local regressions that spanned both the non-linear and
linear portions of the data.
Four main conclusions emerge from this limited test of the

performance of rankLocReg against simulated data. First,
rankLocReg performs better than naive linear regression of full
time series at estimating the slope of a linear subset of the time series.
Second, this analysis strongly supports our recommendations in the
Materials and Methods and Results and Discussion sections that L%
be used as the preferred weighting method. L% is generally more
robust and does a better job than the other methods of choosing local
regressions that both accurately estimate βreal and correctly include the
truly linear subset of these simulated data. Third, rankLocReg
becomes progressively better at accurately estimating βreal values that
are further from 0 (and presumably further from 1 as well). Fourth,
this analysis highlights that while there can be significant variation in
the performance of each of the three Lmetric weightingmethods, it is
rare that all threemis-identify the truly linear subset of the time series.
Taken together, these results indicate that the methods provided in
LoLinR perform well for their intended purpose for the type of data
simulated here.
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