

Figure S1. Custom-built enclosure with adjustable slit-shaped aperture. The enclosure was placed into a large cooler filled with artificial seawater, and hagfishes were placed, one at a time, into the enclosure and observed from above as they attempted to escape through the slit. A glass lid (not shown) allowed filming from above. The enclosure had dimensions of 0.203 m x 0.0508 m x 0.176 m for a total of 1.17 m³.

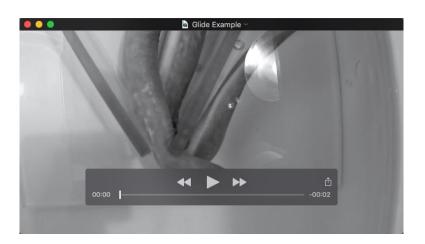

Figure S2. Simplified model of body diameter at the leading and trailing sides of a hagfish as it moves through a narrow opening. The model assumes a cylindrical body surrounded by a compliant skin, with a volume of incompressible fluid in the space between that is 20% of the total volume. The model assumes that fluid retention in the trailing side is complete, with no leakage toward the leading side. Squeezing more fluid into a progressively smaller space causes the ratio of trailing to leading diameter to go to infinity as the body approaches 100% passage through the hole. However, even up to values of 80% passage, swelling is modest (about 50% increase in diameter).

Table S1. Behavior key used to define the behaviors demonstrated by Atlantic hagfish (*M. glutinosa*) and Pacific hagfish (*E. stoutii*) while maneuvering through narrow slits (see Supplementary Videos S1 and S2 for demonstration of some of these behaviors).

CODE	BEHAVIOR	DESCRIPTION
А	Anchor	The leading portion of the body is hooked around an object (>90° bend around a support)
В	Twist	A rotary movement about the long axis of the body
С	Wag	The leading portion of the body is swung from one side to another
D	Rest	The animal remains motionless with a part of its body within the slit
E	Tight Loop	The animal forms a loop with the portion of the body immediately adjacent to the slit - used for both forward progress and retreat
F	Double Loop	The animal forms two tight loops, resembling the shape of an eight
G	Glide	Forward progression without any obvious swimming motion (non- undulatory forward movement)
Н	Head Bend	The animal's head (first few cm) is bent laterally at an angle $>90^{\circ}$ from the rest of its body - used to force the head through the slit
I	Wide Loop	A part of the trailing portion of the body is pressed against the walls of the enclosure or through the slit, while the leading portion is pulled back into the enclosure

Movie 1. A Pacific hagfish (*E. stoutii*) maneuvering through a slit with a width of 7.0 mm. In this video, the hagfish makes repeated attempts to pass through a slit with width equal to half its body width and is eventually successful. This video, recorded in the lab, illustrates some of the behaviors described in Table S1.

Movie 2. An Atlantic hagfish (*M. glutinosa*) demonstrating the "glide" behavior while passing through a slit with a width of 8.5 mm. This slit is nearly half the width of the animal's body (17.9 mm). This gliding behavior is a form of non-undulatory locomotion and is described in Table S1.