	Fluid density, $\mathbf{k g} / \mathbf{m}^{\mathbf{3}}$	Relative fluid velocity, $\mathbf{m ~ s}^{\mathbf{- 1}}$	Length $\mathbf{s c a l e}, \mathbf{m}$	Dynamic $\mathbf{v i s c o s i t y ,}$ $\mathbf{N s} / \mathbf{m}^{2}$	Re, unitless
Human/air	1.225	1	1	$18 \mathrm{E}-6$	$\approx 68 \mathrm{E} 3$
Fly/air	1.225	$30 \mathrm{E}-3$	$2 \mathrm{E}-3$	$18 \mathrm{E}-6$	≈ 4
Human/honey	1450	$30 \mathrm{E}-3$	1	14	≈ 3

Table S1: Reynolds numbers of different animals walking through different fluids. The viscosity of air to a fly walking at $30 \mathrm{~mm} \mathrm{~s}^{-1}$ is like the viscosity of honey to a human walking at the same speed. In such a scenario, a person would not be able to make ballistic motions due to the damping from the viscous honey. By the same logic, walking in fruit flies is hardly a dynamic motion; instead, it is dominated by viscous forces from the air and elastic forces from its muscles.

Figure S1: Distribution of contralateral phase relationships ϕ_{C} at walking speeds below 5 BL s^{-1}. Instead of a bimodal distribution, whose peaks would be centered at around $1 / 3$ and $2 / 3$, contralateral phases at low and intermediate walking speeds cluster around 0.5 . This indicates anti-phasic stepping in contralateral legs of the same segment. Idealized tetrapod coordination ($\phi_{C}=1 / 3$ or $2 / 3$) is observed rarely.

