~ SUPPLEMENTARY TABLES ~

Table S1: Sample sizes. Number of successful trials (out of 42 presented trials) and number of all unique calls recorded per stimulus and individual. The column 'stimulus type' lists the presented sound (Exp. I) or control stimulus (Exp. II).

		individual			
Experiment		stimulus type	Α	В	С
		rustling	42	39	40
	successful trials	amplitude inversion	42	36	41
Т		phase scramble	42	41	42
1		rustling	2163	1932	2393
	unique calls recorded	amplitude inversion	2303	1869	2361
		phase scramble	2263	2107	2507
		silence	41	36	39
	successful trials	amplitude inversion	37	35	37
II		phase scramble	39	40	38
		silence	2309	2004	2065
	unique calls recorded	amplitude inversion	2030	1922	1976
		phase scramble	2079	2242	2119

Table S2: Modelled difference in call level (in dB, REMLE) recorded at the central microphone (0°) during playback compared to silence1 in Experiment I. These results originate from the models that were selected by the tests in Table S3.

individual	stimulus					
	rustling	amplitude inversion	phase scramble			
Α	3.6	3.1	9.6			
В	2.1	6.1	2.7			
С	/	/	/			

individual	effect	LLR	df	р
Α	stimulus : phase	35.58	4	< 0.0001
В	stimulus : phase	18.41	4	0.0010
С	stimulus : phase	8.64	4	0.0707
	stimulus	2.57	2	0.2763
	phase	2.78	2	0.2489

Table S3: Statistical results for the effect of stimulus type, experimental phase and their interactions on the call level recorded at the central microphone (0°) in Experiment I.

Table S4: Statistical results for the effect of experimental phase on the call level recorded at the central microphone (0°) in Experiment I. Note that these models were computed separately for each stimulus type, as opposed to the models in Tab. S3 which were computed for the full data set.

stimulus	individual	effect	LLR	df	р
rustling	Α	phase	17.02	2	0.0002
	В	phase	6.69	2	0.0352
	С	phase	2.05	2	0.3588
amplitude inversion	Α	phase	24.09	2	< 0.0001
	В	phase	48.29	2	< 0.0001
	С	phase	8.31	2	0.0156
phase scramble	Α	phase	62.41	2	< 0.0001
	В	phase	23.25	2	< 0.0001
	С	phase	3.21	2	0.2005

Table S5: Modelled general increase in call level (in dB, REMLE) during playback compared to silence1 in Experiment I. These models were computed for calls whose sonar beam was directed at the non-active loudspeakers angles (25° and 42.9°), using their call RMS level recorded at the non-active loudspeakers. The values in the table should not be subtracted from the values in Table S2, because they are not additive, being means. Note, however, that the values are lower than in Table S2, because besides the general increase in call level, bats also concentrated their scanning beam movements towards the playback source.

individual	stimulus					
	rustling	amplitude inversion	phase scramble			
Α	1.5	3.1	8.6			
В	-1.9	4.9	1.3			
С	/	/	/			

Table S6: Modelled difference between the call levels (in dB, REMLE) recorded at the central microphone (0°) and the peripheral microphones (25°), separately for silence1 and playback phase in Experiment I. Note that the difference was higher during the playback phase in individuals A and B, showing that the beam movements were more often aimed at the playback loudspeaker during the playback than during pre-playback silence. These results originate from the models that were selected by the tests in Table S6.

phase	individual			
phase	muviuuai	rustling	amplitude inversion	phase scramble
silence1	Α	1.1	0.8	0.4
	В	-0.2	0.3	0.3
	С	0.6	1.3	1.3
playback	Α	1.7	1.7	2.8
	В	0.9	1.4	1.4
	С	0.6	1.3	1.3

Table S7: Statistical results for the microphone angle, experimental phase, presented stimulus type and their interactions in Experiment I. Recordings from the central microphones (0°) and the surrounding peripheral microphones (25°) were included in the modelled dataset.

individual	effect	LLR	df	р
Α	angle : phase : stimulus	17.00	4	0.0019
В	angle : phase : stimulus	4.56	4	0.3353
	angle : stimulus	6.91	2	0.0315
	angle : phase	33.48	2	< 0.0001
	phase : stimulus	23.10	4	0.0001
С	angle : phase : stimulus	2.16	4	0.7064
	angle : stimulus	15.62	2	0.0004
	angle : phase	0.48	2	0.7829
	phase : stimulus	9.72	4	0.0454

Table S8: Statistical results for the microphone angle, presented stimulus type, loudspeaker position and their interactions computed separately for the silence1 and playback phase of Experiment 1. Note that stimulus effect and its interactions did not play a role in the model during the silence1 phase, but only during the playback phase. Significant angle:loudspeaker interactions are a result of different call levels recorded at each microphones, probably due to preferred scanning directions of the bats (see Fig. S2). These interactions were present irrespective of experimental phase or individual tested. The threefold interactions angle:stimulus:loudspeaker did not have a significant effect and are therefore not shown in the table.

experimental phase	individual	effect	LLR	df	р
silence1	Α	angle : stimulus	1.37	2	0.5046
		stimulus : loudspeaker	7.19	4	0.1260
		stimulus	2.77	2	0.2498
		angle : loudspeaker	195.23	2	< 0.0001
	В	angle : stimulus	1.45	2	0.4833
		stimulus : loudspeaker	1.79	4	0.7750
		stimulus	0.06	2	0.9685
		angle : loudspeaker	121.42	2	< 0.0001
	С	angle : stimulus	1.17	2	0.5568
		stimulus : loudspeaker	9.57	4	*0.0482
		stimulus	1.67	2	0.4331
		angle : loudspeaker	121.97	2	< 0.0001
playback	Α	angle : stimulus	16.39	2	0.0003
		stimulus : loudspeaker	3.31	4	0.5071
		angle : loudspeaker	171.92	2	< 0.0001
	В	angle : stimulus	8.31	2	0.0157
		stimulus : loudspeaker	3.58	4	0.4652
		angle : loudspeaker	104.44	2	< 0.0001
	С	angle : stimulus	5.45	2	0.0655
		stimulus : loudspeaker	14.43	4	0.0060
		angle : loudspeaker	123.69	2	< 0.0001

* This interaction term had a high *p*-value and was not supported by the AIC.

Table S9: Statistical results for the microphone angle, experimental phase, presented stimulus type and their interactions in Experiment I. These results were calculated for a subset of the data including only recordings of the three microphones located next to the loudspeakers (i.e. microphones 3, 5, and 6). For each playback, the microphone next to the active playback loudspeaker had an angle of 0° , while the other two microphones were either located at 25° and 42.9° (if stimuli were played from the left or right loudspeaker) or were both located at 25° (if stimuli were played from the middle loudspeaker).

individual	effect	LLR	df	р
Α	angle : phase : stimulus	88.75	8	< 0.0001
В	angle : phase : stimulus	35.79	8	< 0.0001
С	angle : phase : stimulus	7.31	8	0.5040
	angle : stimulus	11.98	4	0.0175
	angle : phase	15.37	4	0.0040
	phase : stimulus	6.85	4	0.1442

Table S10: Modelled difference in call level (in dB, REMLE) between the playback microphone (0°) and the other two microphones at the silent loudspeakers (at 25° or 42.9°) in Experiment I. Note that this difference is higher during the playback phase than the silence1 phase for those playbacks where individuals A and B directed their calls towards the playback.

nhaga	difference	individual	stimulus		
phase	re. angle	muiviuuai	rustling	amplitude inversion	phase scramble
silence1	25°	Α	0.7	0.8	0.1
		В	-0.9	0.1	0.2
		С	-0.4	-0.4	-0.4
	42.9 °	Α	1.6	0.8	0.5
		В	-0.5	0.5	-0.2
		С	-0.2	-0.2	-0.2
playback	25 °	Α	0.8	1.4	2.4
		В	0.2	1.9	0.8
		С	0.2	0.2	0.2
	42.9 °	Α	2.5	3.2	7.0
		В	1.5	5.3	1.0
		С	-0.7	-0.7	-0.7

Table S11: Statistical results for microphone angle, presented stimulus type and their interaction computed separately for the silence1 and playback phase of Experiment 1. These results were calculated using a subset of the data (i.e., only recordings of the three microphones located next to the loudspeakers were included).

experimental phase	individual	effect	LLR	df	р
silence1	Α	angle : stimulus	9.80	4	*0.0440
		stimulus	2.05	2	0.3586
		angle	30.54	2	< 0.0001
	В	angle : stimulus	12.40	4	*0.0146
		stimulus	0.01	2	0.9962
		angle	1.47	2	0.4788
	С	angle : stimulus	1.07	4	0.8987
		stimulus	1.57	2	0.4567
		angle	6.36	2	0.0415
playback	Α	angle : stimulus	91.69	4	< 0.0001
	В	angle : stimulus	80.70	4	< 0.0001
	С	angle : stimulus	1.37	4	0.8497
		stimulus	2.74	2	0.2537
* T T1 ' / / 1	1 1 1 1	angle	28.46	2	< 0.0001

* These interactions had a high *p*-value and were not supported by the AIC.

Table S12: Statistical results for the effects of stimulus type, experimental phase and their interaction on the proportion of identified sonar beam directions aimed at the playback loudspeaker in Experiment I. In individuals A and B, we found no significant effect of stimulus (not shown). Only a significant effect of phase or its interaction shows that there was a response to the playback.

individual	effect	LLR	df	р
Α	stimulus : phase	8.09	4	0.0885
	phase	24.34	2	< 0.0001
В	stimulus : phase	8.25	4	0.0827
	phase	14.15	2	0.0008
С	stimulus : phase	8.86	4	0.0648
	phase	0.34	2	0.8431
	stimulus	9.80	2	0.0074

Both phase and stimulus had three levels, resulting in df=4 ((3-1) × (3-1)) for interactions and df=2 (3-1) for isolated effects.

Table S13: Modelled proportion of identified sonar beam directions aimed at the playback loudspeaker (MLE) in Experiment I. Note that 0.33 indicates that the sonar beam was aimed equally often at the three loudspeakers, whereas higher values show the preference for the playback loudspeaker (c.f. Fig. 4). Preferences for the playback loudspeaker were found for individuals A and B during the playback phase.

nhaga	individual	Stimulus			
phase		rustling	amplitude inversion	phase scramble	
silence1	Α	0.39	0.37	0.28	
	В	0.33	0.29	0.35	
	С	0.21	0.34	0.34	
playback	Α	0.46	0.37	0.52	
	В	0.33	0.60	0.35	
	С	0.21	0.34	0.34	

Table S14: Statistical results for the effect of experimental phase, condition (rustling vs. control sound) and their interaction on the call level recorded at the playback microphones in **Experiment II.** If no interaction was found, the effect of experimental phase and condition were analysed separately.

Stimuli	individual	effect	LLR	df	р
rustling vs. silence	Α	phase : condition	40.53	2	< 0.0001
	В	phase : condition	47.39	2	< 0.0001
	С	phase : condition	3.42	2	0.1809
		phase	2.29	2	0.3183
		condition	5.43	1	0.0198
rustling vs. amplitude	Α	phase : condition	8.99	2	0.0112
inversion	В	phase : condition	17.76	2	0.0001
	С	phase : condition	4.38	2	0.1118
		phase	0.68	2	0.7103
		condition	4.91	1	0.0267
rustling vs.	Α	phase : condition	30.94	2	< 0.0001
phase scramble	В	phase : condition	3.61	2	0.1648
		phase	26.77	2	< 0.0001
		condition	4.25	1	0.0392
	С	phase : condition	0.29	2	0.8641
		phase	0.36	2	0.8367
		condition	2.18	1	0.1401

Table S15: Modelled difference in call level (in dB, REMLE) at the rustling-loudspeaker compared to the control-loudspeaker during the playback phase of Experiment II.

Individual _	control stimulus			
	silence	amplitude inversion	phase scramble	
Α	2.7	-0.5	-2.7	
В	2.8	-2.4	-0.4	
С	-0.5	-0.4	/	

Table S16: Modelled proportion of identified sonar beam directions aimed at the rustlingloudspeaker (MLE) in Experiment II. Only identified sonar beam directions aimed at either of the two playback loudspeakers were used for estimating the proportions. Therefore, 0.5 indicates that bats scanned the playback and control loudspeaker equally, whereas higher values indicate that the sonar beam was more often aimed at the rustling loudspeaker (c.f. Fig. 6). This was found for individuals A and B during the playbacks of rustling with silence, showing a clear reaction to insect-generated sound.

Phase	individual	control stimulus			
1 mase		silence	amplitude inversion	phase scramble	
silence1	Α	0.48	0.52	0.42	
	В	0.44	0.37	0.46	
	С	0.47	0.48	0.48	
playback	Α	0.66	0.52	0.42	
	В	0.73	0.32	0.46	
	С	0.47	0.48	0.48	

~ SUPPLEMENTARY FIGURES ~

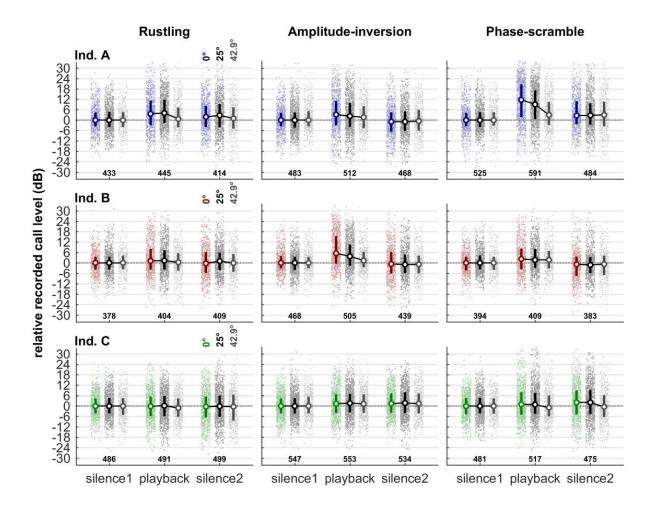


Fig. S1: Relative call levels in Experiment I (Single Playbacks) recorded only on the three central microphones (i.e. 3, 5, and 6). Displayed is the data for three individual bats (A-C) and for three different playback types (left to right: moth rustling, amplitude-inverted control, phase-scrambled control). Call levels are expressed relative to the mean level of all calls recorded at the same microphone during the silence1 phase. Each panel displays the median (\pm quartiles) of all calls (dots) recorded on the microphone beside the active playback speaker (0°) and the microphones at 25° and 42.9° angle around this speaker, separately for the three 3-s long phases of an experimental trial (silence1, playback, silence2). Small numbers at the bottom report the total number of unique echolocation calls recorded during the respective phase. Experimental phase, microphone angle, and stimulus type and/or their interactions significantly influenced the recorded call level (see results and **Tables S8-S10** for detailed statistics). Note that the considerable variation in call level is caused by the bats' continuous sonar beam scanning on top of sonar beam focusing, which was controlled for by a longitudinal random factors structure.

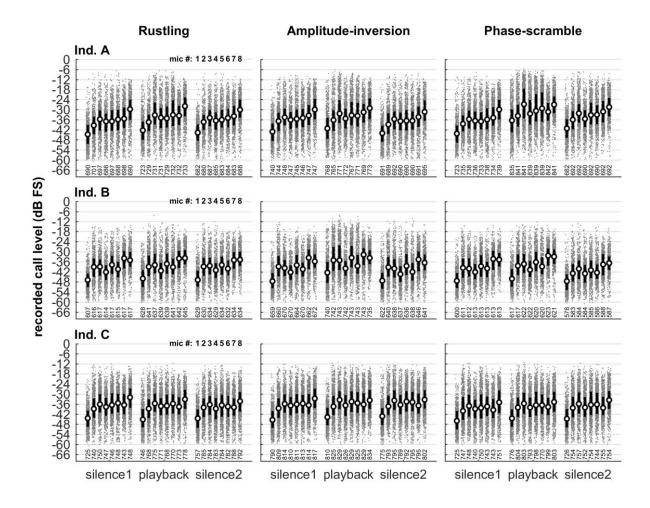
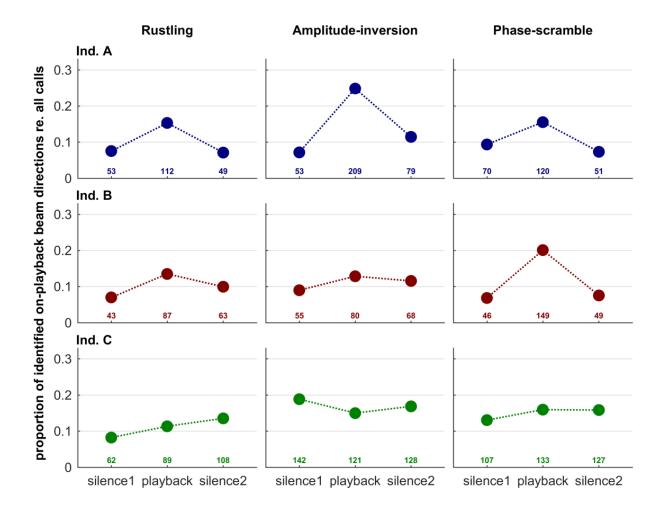



Fig. S2: Recorded call levels in Experiment I (Single Playbacks) at each microphone (1-8), for three individual bats (A-C) and for three different playback types (left to right: moth rustling, amplitude-inverted control, phase-scrambled control). Each panel displays the median (\pm quartiles) of all calls (dots) recorded on each microphone, separately for the three 3-s long phases of an experimental trial (silence1, playback, silence2). Small numbers at the bottom report the total number of unique echolocation calls recorded on each microphone during the respective phase. Note that, despite the calibration, there is still considerable variation in recorded call level between the microphones as well as between the bats, potentially caused by preferred scanning directions of the bats.

Fig. S3: Sonar beam direction in Experiment I (Single Playbacks) for three individual bats (**A-C**) and for three different playback types (left to right: moth rustling, amplitude-inverted control, phase-scrambled control). Each panel shows the proportion of identified sonar beam directions aimed at the playback, relative to the total number of all identified sonar beam directions, separately for each of the three 3-s long phases of an experimental trial (silence1, playback, silence2). Small numbers at the bottom indicate the number of identified beam directions that were aimed at the playback during the respective phase.

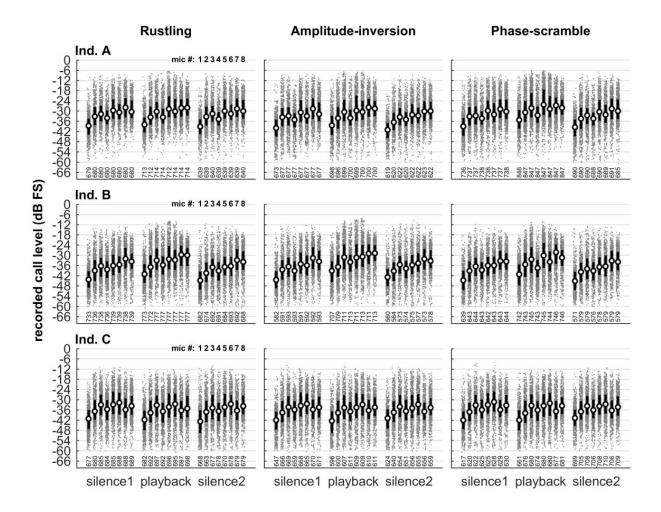
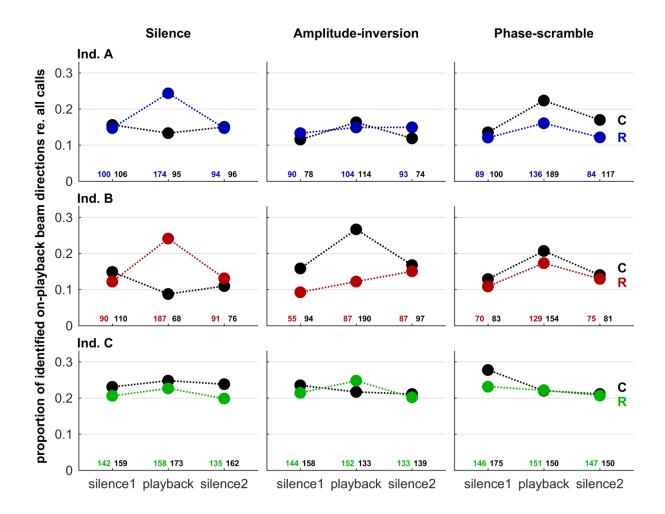



Fig. S4: Recorded call levels in Experiment II (Paired Playbacks) at each microphone (1-8), for three individual bats (A-C) and for three different playback types (left to right: moth rustling, amplitude-inverted control, phase-scrambled control). Each panel displays the median (\pm quartiles) of all calls (dots) recorded on each microphone, separately for the three 3-s long phases of an experimental trial (silence1, playback, silence2). Small numbers at the bottom report the total number of unique echolocation calls recorded on each microphone during the respective phase. Note that, despite the calibration, there is still considerable variation in recorded call level between the microphones as well as between the bats, potentially caused by preferred scanning directions of the bats.

Fig. S5: Sonar beam direction in Experiment II (Paired Playbacks). For the three bats (individuals **A-C**) the proportion of identified sonar beam directions are shown with each column displaying the results for one of the three paired playback types: The sound of a moth rustling on leaves was either paired with silence (left), or with the amplitude-inverted (middle) or phase-scrambled (right) control version of a different rustling sound. Each panel shows the proportion of identified beam directions that were aimed at the rustling (coloured, R) and control playback (black, C), relative to the total number of identified beam directions, separately for each of the three 3-s long phases of an experimental trial (silence1, playback, silence2). Only two loudspeakers, the left and right one, were included in this analysis. Small numbers at the bottom indicate the number of unique directed calls that were focused on the two playbacks during the respective phase.