Table S1: Summary of Effects of Serotonin on Aggression | Study
Species | Study Results | Evidence of 5HT increasing or decreasing aggression | |------------------|---|---| | Vertebrates | | | | Mice | Tryptophan-hydroxylase 2-deficient (Tph2^{-/-}) mice exhibited higher aggression in resident-intruder paradigm (Mosienko et al., 2012) Citalopram (selective 5-HT reuptake inhibitor, SSRI)-injected mice exhibited less aggression (Caldwell and Miczek, 2008) Male and female homozygous 5-HT transporter (SERT) knockouts exhibited less aggression (Holmes et al., 2002; Heiming et al., 2013) Suppression of 5-HT firing by genetically overexpressing the Htr1a autoreceptor increased aggression (Audero et al., 2013) | Decreasing | | Humans | Individuals with tryptophan-hydroxylase 2 (TPH2) "risk" haplotype exhibited higher aggression levels (Perez-Rodrigues et al., 2010) Violent antisocial behavior consistently associated with lower 5-HIAA (5-HT metabolite) in cerebrospinal fluid (Moore et al., 2002) Selective 5-HT reuptake inhibitor (SSRI) treatment reduces measures of impulsive aggression (Coccaro et al., 1997; Reist et al., 2003; New et al., 2004) Lower SERT distribution (indicating less 5-HT terminals) in anterior cingulate cortex of individuals with impulsive aggression (Frankle et al., 2005) | Decreasing | | Rats | Rats with 5,7-dihydroxytryptamine (5,7-DHT) injections that decreased brain 5-HT levels exhibited higher levels of killing behavior (Vergnes and Kempf, 1982) Aggression reduced by systemic injections of 5-HT_{1A} agonists (Blanchard et al., 1988; Nikulina et al., 1992) Systemic 5-HT₂ agonists reduce territorial aggression in male rats (Muehlenkamp et al., 1995) Intracerebroventricular (icv.) infusion of 5-HT_{1B} agonists reduces territorial aggression in male rats (Mos et al., 1992) Decreased 5-HT release in prefrontal cortex during and after aggressive behavior in male rats (van Erp and Miczek, 2000) Homozygous SERT knockout male rats display less territorial aggression (Homberg et al., 2007) Lesioning 5-HT cell bodies in female rats reduces maternal aggression (Holschbach et al., 2018) Activation of 5-HT_{1A} autoreceptors in dorsal raphe (to suppress 5-HT firing) reduces maternal aggression (da Veiga et al., 2011) Partial depletion of brain 5-HT increases aggressiveness in naturally low-aggressive male rats (Wallinga et al., 2009) | Decreasing (males) Increasing (females) | | Hamsters | Subcortical brain regions associated with aggression show less 5-HT innervation in highly aggressive male golden hamsters (Cervantes and Delville, 2007) Intracerebroventricular (icv.) infusions of 5-HT_{1A} agonists decreased aggression in males but not females, while 5-HT_{1B} infusions were ineffective in both sexes (Joppa et al., 1997) 5-HT_{1A} agonist injections into the hypothalamus inhibited aggression in male Syrian hamsters, but increased aggression in females (Terranova et al., 2016) Dominant female Syrian hamsters show increased activation of 5-HT neurons in the dorsal raphe (Terranova et al., 2016) | Decreasing (males) Increasing (females) | |---------------|--|--| | Prairie Voles | Fluoxetine (SSRI)-treated males exhibited less aggressive behavior, but fluoxetine-treated females exhibited no changes in aggression (Villalba et al., 1997) | Decreasing (males) No Effect (females) | | Birds | Injections of either fluoxetine (SSRI) or 5-HT_{1A} agonist reduce territorial aggression in male song sparrows (Sperry et al., 2003) Aggression in known submissive pigeons is increased following partial brain depletion of 5-HT (Ison et al., 1996) Injections of 5-hydroxytryptophan (5-HT precursor) decrease aggression in dominant pigeons (Fachinelli et al., 1989) | Decreasing | | Reptiles | Fluoxetine (SSRI) injection reduced aggressive responses in male green anole lizards (Deckel, 1996) Dominant male green anoles treated with sertraline (SSRI) exhibited less aggressive displays (Larson and Summers, 2001) Baseline 5-HT activity in brain regions associated with aggression is lower in dominant male green anoles (Summers et al., 2005) | Decreasing | | Amphibians | Territorial calling and defense in male coqui frogs are decreased by
repeated systemic injections of either fluoxetine (SSRI) or 5-HT_{1A}
agonists or 5-HT_{2A/C} agonists (Ten Eyck, 2008; Ten Eyck and
Regen, 2014) | Decreasing | | Fish | Atlantic cod fed food supplemented with the 5-HT precursor L-tryptophan (TRP) exhibited less aggressive acts (Höglund et al., 2005) Rainbow trout fed supplemental TRP exhibited less aggression (Winberg et al., 2001) Siamese fighting fish and wildtype zebrafish in water treated with fluoxetine (SSRI) demonstrated a lower number of aggressive attacks than controls (Kohlert et al., 2012; Norton et al., 2011) Male bluehead wrasse injected with fluoxetine (SSRI) exhibited less aggressive behavior than controls (Perreault et al., 2003) | Decreasing | | Invertebrates | | | | Arthropods | | | | Crustaceans | Crustaceans | | | |---|--|-------------------------|--| | Lobsters | 5-HT-injected squat lobsters (<i>Munida quadrispina</i>) exhibited more aggressive postures in isolation and increased territorial aggression towards untreated intruders (Antonsen and Paul, 1997) Duration and intensity of fights are increased after 5HT injection in American lobsters (<i>Homarus americanus</i>, Huber et al., 1997) Fight winning and territorial possession in juvenile American lobsters (<i>H. americanus</i>) are not affected by low dose 5-HT injection, while high dose 5-HT promotes subordination (Peeke et al., 2000) Discrete aggressive behaviors during intrasexual fights between size-matched juvenile <i>H. americanus</i> are increased by injections of 5-carboxamidotryptamine maleate (agonist for 5-HT₁, 5-HT₅, and 5-HT₇ receptors) but decreased by 5-HT injection (Tierney and Mangiamele, 2001) | Generally
Increasing | | | Crayfish | 5-HT-injected subordinate <i>Astacus astacus</i> crayfish were more willing to engage with dominants (Huber et al., 1997) 5-HT-injected small <i>Procambarus clarkii</i> crayfish were more likely to win fights against larger, untreated crayfish, with retention of dominance towards new larger opponents enhanced by fluoxetine (SSRI) (Momohara et al., 2013) 5-HT injections delay decision to retreat during fights (Bacque-Cazenave et al., 2018) Chronic 5-HT administration increases fight intensity in sizematched <i>Orconectes rusticus</i> crayfish (Panksepp and Huber, 2002) | Increasing | | | Crabs | Male <i>Neohelice granulatus</i> crabs injected with 5-HT display more approaches and attacks than vehicle-treated opponents (Pedetta et al., 2010) Male shore crabs (<i>Carcinus maenas</i>) that win fights have higher endogenous circulating 5-HT than losers, both at rest and post-contest (Sneddon et al., 2000) No change in aggression (towards mirror image) following injection of fluoxetine (SSRI) in striped shore crabs (<i>Pachygrapsus crassipes</i>, Hamilton et al., 2016) | Generally
Increasing | | | Insects | | | | | Fruit Flies
(<i>Drosophila</i>
melanogaster) | TRH-Gal4 driver flies with reduced 5-HT neurotransmission exhibited less aggressive behaviors (Alekseyenko et al., 2010) Drug-induced increase of 5-HT in fly brain increased aggression (Dierick and Greenspan, 2007) Drug-induced decrease of 5-HT only modestly lowered fighting frequencies (Dierick and Greenspan, 2007) | Increasing | | | Stalk-eyed flies
(Teleopsis
dalmanni) | 5-HTP (5-HT precursor)-treated flies won more contests than untreated flies (Bubak et al., 2014) Smaller, 5-HT-treated opponents had higher levels of high-intensity aggressive behaviors (Bubak et al., 2015) 5-HTP-treated flies had a higher probability of winning contests (Bubak et al., 2013) | Increasing | |---|--|--------------------------------| | Crickets
(Gryllus
bimaculatus) | 5-HTP (5-HT precursor)-injected males exhibited more aggressive postures and behaviors (Dyakonova and Krushinsky, 2013) Male crickets treated with either AMTP (5-HT synthesis inhibitor), 5-HT antagonists, 5-HTP (5-HT precursor) or fluoxetine (SSRI) exhibited no change in aggressive or submissive behaviors during an initial fight (Stevenson et al., 2000; Rillich and Stevenson, 2018) Injection of AMTP (5-HT synthesis inhibitor) promotes recovery of aggression in losing males, but only after they have fought (Rillich and Stevenson, 2018) Injection of fluoxetine (SSRI) promotes losing in males (Abbey-Lee et al., 2018) | Mixed, trend
for decreasing | | Ants | Oral administration of 5-HTP (5-HT precursor) increases aggression towards non-nestmates in pavement ants (<i>Tetramorium caespitum</i>) (Bubak et al., 2016) 5-HT-administration to <i>Formica polyctena</i> ants promoted some aspects of aggressive behavior towards non-conspecifics (<i>F. fusca</i>) and potential prey (house cricket nymphs), but had no effect on conspecific aggression (Szczuka et al., 2013) 5-HT and 5-HTP injections increased percentage of ants (<i>Formica rufa</i>) fighting amongst themselves (Kostowski and Tarchalska, 1972) Endogenous 5-HT decreases in subordinate worker ants (<i>Harpegnathos saltator</i>) following formation and reinforcement of social hierarchy (Penick et al., 2014) Endogenous 5-HT is highest in <i>H. saltator</i> ants of the foraging caste, which are known to actively attack intruders (Penick et al., 2014) | Increasing | | Honey bees | 5-HT application increases likelihood of stinging attacks during colony defense (Nouvian et al., 2018) | | | Molluscs (Cep | halopods) | | | Octopus | MDMA (SSRI) enhanced pro-social (non-aggressive) behaviors
(Edsinger and Dölund, 2018) | Decreasing | ## References Abbey-Lee, R. N., Uhrig, E. J., Garnham, L., Lundgren, K., Child, S. and Løvlie, H. (2018). Experimental manipulation of monoamine levels alters personality in crickets. *Scientific Reports* 8, 16211. Alekseyenko, O. V., Lee, C., and Kravitz E.A. (2010). Targeted manipulation of serotonergic neurotransmission affects the escalation of aggression in adult male *Drosophila melanogaster*. *Plos One* 5, e10806. Antonsen, B. L., and Paul, D. H. (1997). Serotonin and octopamine elicit stereotypical agonistic behaviors in the squat lobster Munida quadrispina (Anomura, Galatheidae). *J Comp Physiol A* 181, 501-510. Audero, E., Mlinar, B., Baccini, G., Skachokova, Z. K., Corradetti, R., and Gross, C. (2013). Suppression of serotonin neuron firing increases aggression in mice. *J Neurosci* 33, 8678-8688. Bacqué-Cazenave, J., Cattaert, D., Delbecque, J. P., and Fossat, P. (2018). Alteration of size perception: serotonin has opposite effects on the aggressiveness of crayfish confronting either a smaller or a larger rival. *J Exp Biol.* 221, jeb177840. Blanchard, D. C., Rodgers, R. J., Hendrie, C. A. and Hori, K. (1988). 'Taming' of wild rats (*Rattus rattus*) by 5HT1A agonists buspirone and gepirone. *Pharmacology Biochemistry and Behavior* 31, 269-278. Bubak, A. N., Renner, K. J., and Swallow, J. G. (2014) Heightened serotonin influences contest outcome and enhances expression of high-intensity aggressive behaviors. *Behav Brain Res* 259, 137-142. Bubak, A. N., Rieger, N. S., Watt, M. J., Renner, K. J., and Swallow, J. G. (2015). David vs. Goliath: Serotonin modulates opponent perception between smaller and larger rivals. *Behav Brain Res* 292, 521-527. Bubak, A. N., Swallow, J. G., and Renner, K. J. (2013). Whole brain monoamine detection and manipulation in a stalk-eyed fly. *J Neurosci Methods* 219, 124-130. Bubak, A. N., Yaeger, J. D. W., Renner, K. J., Swallow, J. G. and Greene, M. J. (2016). Neuromodulation of Nestmate Recognition Decisions by Pavement Ants. *PLoS One* 11, e0166417. Caldwell, E. E., and Miczek, K. A. (2008). Long-term citalopram maintenance in mice: selective reduction of alcohol-heightened aggression. *Psychopharmacology* 196, 407-416. Cervantes, M. C., and Delville, Y. (2007). Individual differences in offensive aggression in golden hamsters: a model of reactive and impulsive aggression? *Neuroscience* 150, 511-521. - Coccaro, E. F. and Kavoussi, R. J. (1997). Fluoxetine and impulsive aggressive behavior in personality-disordered subjects. *JAMA Psychiatry* 54, 1081-1088. - da Veiga, C. P., Miczek, K. A., Lucion, A. B. and de Almeida, R. M. (2011). Social instigation and aggression in postpartum female rats: role of 5-HT_{1A} and 5-HT_{1B} receptors in the dorsal raphe nucleus and prefrontal cortex. *Psychopharmacology (Berl)* 213, 475-87. - Deckel, A. W. (1996). Behavioral changes in *Anolis carolinensis* following injection with fluoxetine. *Behavl Brain Res* 78, 175-182. - Dierick, H.A., and Greenspan R. J. (2007). Serotonin and neuropeptide F have opposite modulatory effects on fly aggression. *Nat Genet* 39, 678-682. - Dyakonova, V.E., and Krushinsky, A. L. (2013). Serotonin precursor (5-hydroxytryptophan) causes substantial changes in the fighting behavior of male crickets, Gryllus bimaculatus. *J Comp Physiol A* 199, 601-609. - Edsinger, E., and Dölen, G. (2018). A conserved role for serotonergic neurotransmission in mediating social behavior in octopus. *Current Biology* 28, 3136-3142. - Fachinelli, C., Sargo, S., Bataller, R., and Rodríguez Echandía, E. L. (1989). Effect of 5-HTP and ketanserine on the aggressive reaction induced by food competition in dominant and submissive pigeons (*Columba livia*). *Behavioural Brain Research* 35, 265-270. - Frankle, W. G., Lombardo, I., New, A. S., Goodman, M., Talbot, P. S., Huang, Y., Hwang, D-R., Slifstein, M., Curry, S., Abi-Dargham, A., et al. (2005). Brain serotonin transporter distribution in subjects with impulsive aggressivity: A positron emission study with [11C]McN 5652. *American Journal of Psychiatry* 162, 915-923. - Hamilton, T. J., Kwan, G. T., Gallup, J. and Tresguerres, M. (2016). Acute fluoxetine exposure alters crab anxiety-like behaviour, but not aggressiveness. *Scientific Reports* 6, 19850. - Heiming, R. S., Monning, A., Jansen, F., Kloke, V., Lesch, K. P., and Sachser, N. (2013). To attack, or not to attack? The role of serotonin transporter genotype in the display of maternal aggression. *Behav Brain Res* 242, 135-141. - Höglund, E., Bakke, M. J., Øverli, Ø., Winberg, S., and Nilsson, G. E. (2005). Suppression of aggressive behaviour in juvenile Atlantic cod (*Gadus morhua*) by L-tryptophan supplementation. *Aquaculture* 249, 525-531. - Holmes, A., Murphy, D. L. and Crawley, J. N. (2002). Reduced aggression in mice lacking the serotonin transporter. *Psychopharmacology* 161, 160-167. - Holschbach, M. A., Vitale, E. M. and Lonstein, J. S. (2018). Serotonin-specific lesions of the dorsal raphe disrupt maternal aggression and caregiving in postpartum rats. *Behavioural Brain Research* 348, 53-64. - Homberg, J. R., Pattij, T., Janssen, M. C. W., Ronken, E., De Boer, S. F., Schoffelmeer, A. N. M. and Cuppen, E. (2007). Serotonin transporter deficiency in rats improves inhibitory control but not behavioural flexibility. *European Journal of Neuroscience* 26, 2066-2073. - Huber R, Smith K, Delago A, Isaksson, K., and Kravitz, E. A. (1997). Serotonin and aggressive motivation in crustaceans: Altering the decision to retreat. *PNAS* 94, 5939-5942. - Ison, M., Fachinelli, C. and Echandía, E. L. R. (1996). Effect of the ICV injection of 5,7-dihydroxytryptamine on the aggressive behavior of dominant and submissive pigeons (*Columba livia*). *Pharmacology Biochemistry and Behavior* 53, 951-955. - Joppa, M. A., Rowe, R. K., and Meisel, R. L. (1997). Effects of serotonin 1A or 1B receptor agonists on social aggression in male and female Syrian hamsters. *Pharmacol Biochem Behavior* 58, 349-353. - Kohlert, J. G., Mangan, B. P., Kodra, C., Drako, L., Long, E., and Simpson, H. (2012). Decreased Aggressive and Locomotor Behaviors in Betta Splendens after Exposure to Fluoxetine. *Psychol Rep* 110, 51-62. - Kostowski, W., and Tarchalska, B. (1972). The effects of some drugs affecting brain 5-HT on the aggressive behaviour and spontaneous electrical activity of the central nervous system of the ant, Formica rufa. *Brain Res* 38, 143-149. - Larson, E. T., and Summers, C. H. (2001). Serotonin reverses dominant social status. *Behav Brain Res* 121, 95-102. - Momohara Y, Kanai A, and Nagayama T. (2013). Aminergic control of social status in crayfish agonistic encounters. *Plos One* 8, e74489. - Moore, T. M., Scarpa, A. and Raine, A. (2002). A meta-analysis of serotonin metabolite 5-HIAA and antisocial behavior. *Aggressive Behavior* 28, 299-316. - Mos, J., Olivier, B., Poth, M. and van Aken, H. (1992). The effects of intraventricular administration of eltoprazine, 1-(3-trifluoromethylphenyl) piperazine hydrochloride and 8-hydroxy-2-(di-n-propylamino) tetralin on resident intruder aggression in the rat. *Eur J Pharmacol* 212, 295-298. - Mosienko. V., Bert, B., Beis, D., Matthes, S., Fink, H., Bader, M., and Alenina, N. (2012). Exaggerated aggression and decreased anxiety in mice deficient in brain serotonin. *Transl Psychiatry* 2, e122. - Muehlenkamp, F., Lucion, A., and Vogel, W. H. (1995). Effects of selective serotonergic agonists on aggressive behavior in rats. *Pharmacol Biochem Behav* 50, 671-674. - New, A. S., Buchsbaum, M. S., Hazlett, E. A., Goodman, M., Koenigsberg, H. W., Lo, J., Iskander, L., Newmark, R., Brand, J., O'Flynn, K. et al. (2004). Fluoxetine increases relative metabolic rate in prefrontal cortex in impulsive aggression. *Psychopharmacology* 176, 451-458. - Nikulina, E. M., Avgustinovich, D. F. and Popova, N. K. (1992). Role of 5HT1A receptors in a variety of kinds of aggressive behavior in wild rats and counterparts selected for low defensiveness towards man. *Aggressive Behavior* 18, 357-364. - Norton, W. H. J., Stumpenhorst, K., Faus-Kessler, T., Folchert, A., Rohner, N., Harris, M. P., Callebert, J. and Bally-Cuif, L. (2011). Modulation of Fgfr1a Signaling in Zebrafish Reveals a Genetic Basis for the Aggression–Boldness Syndrome. *The Journal of Neuroscience* 31, 13796-13807. - Nouvian, M., Mandal, S., Jamme, C., Claudianos, C., d'Ettorre, P., Reinhard, J., Barron, A. B. and Giurfa, M. (2018). Cooperative defence operates by social modulation of biogenic amine levels in the honey bee brain. *Proceedings of the Royal Society B: Biological Sciences* 285, 20172653. - Panksepp, J.B., and Huber, R. (2002). Chronic alterations in serotonin function: Dynamic neurochemical properties in agonistic behavior of the crayfish, *Orconectes rusticus*. *Journal of Neurobiology* 50, 276-290. - Pedetta, S., Kaczer, L. and Maldonado, H. (2010). Individual aggressiveness in the crab Chasmagnathus: Influence in fight outcome and modulation by serotonin and octopamine. *Physiology & Behavior* 101, 438-445. - Peeke, H. V. S., Blank, G. S., Figler, M. H. and Chang, E. S. (2000). Effects of exogenous serotonin on a motor behavior and shelter competition in juvenile lobsters (Homarus americanus). *Journal of Comparative Physiology A* 186, 575-582. - Penick, C. A., Brent, C. S., Dolezal, K. and Liebig, J. (2014). Neurohormonal changes associated with ritualized combat and the formation of a reproductive hierarchy in the ant *Harpegnathos saltator*. *J Exp Biol* 217, 1496-1503. - Perez-Rodriguez, M. M., Weinstein, S., New, A. S., Bevilacqua, L., Yuan, Q. P., Zhou, Z. F., Hodgkinson, C., Goodman, M., Koenigsberg, H. W., Goldman, D., and Siever, L. J. (2010). Tryptophan-hydroxylase 2 haplotype association with borderline personality disorder and aggression in a sample of patients with personality disorders and healthy controls. *J Psychiatr Res* 44, 1075-1081. - Perreault, H. A. N., Semsar, K., and Godwin, J. (2003). Fluoxetine treatment decreases territorial aggression in a coral reef fish. *Physiology & Behavior* 79, 719-724. - Reist, C., Nakamura, K., Sagart, E., Sokolski, K. N. and Fujimoto, K. A. (2003). Impulsive aggressive behavior: open-label treatment with citalogram. *J Clin Psychiatry* 64, 81-85. - Rillich, J., and Stevenson, P. A. (2018). Serotonin mediates depression of aggression after acute and chronic social defeat stress in a model insect. *Frontiers in Behavioral Neuroscience* 12, 233. - Sneddon, L. U., Taylor, A. C., Huntingford, F. A. and Watson, D. G. (2000). Agonistic behaviour and biogenic amines in shore crabs *Carcinus maenas*. *Journal of Experimental Biology* 203, 537-545. - Sperry, T. S., Thompson, C. K. and Wingfield, J. C. (2003). Effects of acute treatment with 8-OH-DPAT and fluoxetine on aggressive behaviour in male song sparrows (*Melospiza melodia morphna*). *J Neuroendocrinol* 15, 150-60. - Stevenson, P. A., Hofmann, H.A., Schoch, K., and Schildberger, K. (2000). The fight and flight responses of crickets depleted of biogenic amines. *J. Neurobiol.* 43, 107-120. - Summers, C. H., Korzan, W. J., Lukkes, J. L., Watt, M. J., Forster, G. L., Øverli, Ø., Höglund, E., Larson, E. T., Ronan1, P. J., Matter, J., M., Summers, T. R., Renner, K. J., and Greenberg, N. (2005a). Does serotonin influence aggression? comparing regional activity before and during social interaction. *Physiol Biochem Zool* 78, 679-694. - Szczuka, A., Korczynska, J., Wnuk, A., Symonowicz, B., Szwacka, A. G., Mazurkiewicz, P., Kostowski, W., and Godzinska, E. J. (2013). The effects of serotonin, dopamine, octopamine and tyramine on behavior of workers of the ant Formica polyctena during dyadic aggression tests. *Acta Neurobiol Exp* 73, 495-520. - Ten Eyck, G. R. (2008). Serotonin modulates vocalizations and territorial behavior in an amphibian. *Behavioural brain research*, 193(1), 144-147. - Ten Eyck, G. R. and Regen, E. M. (2014). Chronic fluoxetine treatment promotes submissive behavior in the territorial frog, Eleutherodactylus coqui. *Pharmacology Biochemistry and Behavior* 124, 86-91. - Terranova, J. I., Song, Z. M., Larkin, T.E., Hardcastle, N., Norvelle, A., Riaz, A., and Albers, H. E (2016). Serotonin and arginine-vasopressin mediate sex differences in the regulation of dominance and aggression by the social brain. *PNAS* 113, 13233-13238. - Tierney, A. and Mangiamele, L. (2001). Effects of serotonin and serotonin analogs on posture and agonistic behavior in crayfish. *Journal of Comparative Physiology A* 187, 757-767. - van Erp, A. M., and Miczek, K. A. (2000). Aggressive behavior, increased accumbal dopamine, and decreased cortical serotonin in rats. *J Neurosci* 20, 9320-9325. Vergnes, M., and Kempf, E. (1982). Effect of hypothalamic injections of 5,7-dihydroxytryptamine on elicitation of mouse-killing in rats. *Behav Brain Res* 5, 387-397. Villalba, C., Boyle, P. A., Caliguri, E. J., and De Vries, G. J. (1997). Effects of the selective serotonin reuptake inhibitor fluoxetine on social behaviors in male and female prairie voles (*Microtus ochrogaster*). *Hormones Behav* 32, 184-191. Wallinga, A. E., ten Voorde, A. M., de Boer, S. F., Koolhaas, J. M. and Buwalda, B. (2009). MDMA-induced serotonergic neurotoxicity enhances aggressiveness in low- but not high-aggressive rats. *Eur J Pharmacol* 618, 22-27. Winberg, S., Øverli, O., and Lepage, O. (2001). Suppression of aggression in rainbow trout (*Oncorhynchus mykiss*) by dietary L-tryptophan. *Journal of Experimental Biology* 204, 3867-3876.