

Fig. S1. Energy expenditure as a function of work. Energy expenditure, calculated from VO₂ and VCO₂ using the Weir equation, plotted against workload for a human subject in a graded exercise test reported in Table 3 of Evardsen et al. 2014. The subject maintained a constant running speed (4.8 kph) while the incline of the treadmill increased from 4% to 20%. Once the treadmill reached 20%, speed was further increased to 5.3 kph and then to 5.8 kph. Workload (Watts) reflects the rate of ascent, speed×sin θ , where θ is treadmill incline angle. The first minute of the test is excluded from this analysis. As can be seen from the plot, energy expenditure continues to track workload above RER=1.00, up to RER=1.15.

Table S1

Click here to download Table S1

Table S2. Tested COLnet linear mixed effect models. Selected model is bolded.

Model	R ² m	R ² c	AIC
lmer (COL _{net} ~ velocity + (1 subject))	0.52	0.86	187
$lmer (COL_{net} \sim t_c^{-1} + (1 \mid subject))$	0.29	0.59	232
lmer (COL _{net} ~ velocity + mass + (1 subject))	0.53	0.86	192
lmer (COL _{net} ~ velocity + imi + (1 subject))	0.52	0.86	180
lmer (COL _{net} ~ velocity + arm + (1 subject))	0.54	0.86	189
lmer (COL _{net} ~ velocity + height + (1 subject))	0.53	0.86	192
$lmer (COL_{net} \sim velocity + difficulty + (1 \mid subject))$	0.54	0.86	188
$lmer (COL_{net} \sim velocity + experience + (1 \mid subject))$	0.51	0.86	188

Table S3. Correlation tests between velocity and potential explanatory variables of COL_{net} .

Variable	Type of test	Correlation coefficient	Significance
Experience	Spearman's	$\rho = -0.08$	p =0.54
Difficulty	Spearman's	$\rho = -0.51$	p <0.01
Inverse contact time	Pearson's	r = 0.73	p <0.01
Body mass	Spearman's	$\rho = 0.05$	p=0.70
Arm length	Spearman's	$\rho = 0.02$	p=0.91
Height	Spearman's	ρ < 0.01	p=0.95
IMI	Spearman's	$\rho = 0.29$	p=0.08