Table S1. Dental microwear texture parameter descriptions. Standard and units according to ISO 25178, motif, furrow, texture direction, texture isotropy, and flatness (ISO 12781) analysis and scale-sensitive fractal analysis (SSFA). Functional group has been assigned by the authors for easier reference to similar parameters.

Parameter	Description (condition)	Standard	Functional group	Unit
Sda	Closed dale area	ISO 25178	Area	$\mu \mathrm{m}^{2}$
Sha	Closed hill area	ISO 25178	Area	$\mu \mathrm{m}^{2}$
mea	Mean area	Motif	Area	$\mu \mathrm{m}^{2}$
Sdr	Developed interfacial area ratio	ISO 25178	Complexity	\%
nMotif	Number of motifs	Motif	Complexity	no unit
Asfc	Area-scale functional complexity	SSFA	Complexity	
Sal	Auto-correlation length ($s=0.2$)	ISO 25178	Density	$\mu \mathrm{m}$
Spd	Density of peaks	ISO 25178	Density	1/ $\mu \mathrm{m}^{2}$
medf	Mean density of furrows	Furrow	Density	$\mathrm{cm} / \mathrm{cm}^{2}$
Std	Texture direction	ISO 25178	Direction	-
Str	Texture aspect ratio ($s=0.2$)	ISO 25178	Direction	no unit
Tr1R	First direction	Direction	Direction	-
Tr 2 R	Second direction	Direction	Direction	-
Tr 3R	Third direction	Direction	Direction	-
IsT	Texture isotropy	Isotropy	Direction	\%
epLsar	Anisotropy	SSFA	Direction	
S10z	Ten-point height	ISO 25178	Height	$\mu \mathrm{m}$
S5p	Five-point peak height	ISO 25178	Height	$\mu \mathrm{m}$
S5v	Five-point valley height	ISO 25178	Height	$\mu \mathrm{m}$
Sa	Arithmetic mean height or mean surface roughness	ISO 25178	Height	$\mu \mathrm{m}$
Sku	Kurtosis of the height distribution	ISO 25178	Height	no unit
Sp	Maximum peak height, height between highest peak and mean plane	ISO 25178	Height	$\mu \mathrm{m}$
Sq	Standard deviation of the height distribution, or RMS surface roughness	ISO 25178	Height	$\mu \mathrm{m}$
Ssk	Skewness of the height distribution	ISO 25178	Height	no unit
Sv	Maximum pit height, depth between the mean plane and the deepest valley	ISO 25178	Height	$\mu \mathrm{m}$
Sxp	Peak extreme height difference between $p=50 \%$ and $q=97.5 \%$	ISO 25178	Height	$\mu \mathrm{m}$
Sz	Maximum height, height between the highest peak and the deepest valley	ISO 25178	Height	$\mu \mathrm{m}$
meh	Mean height	Motif	Height	$\mu \mathrm{m}$
madf	Maximum depth of furrows	Furrow	Height	$\mu \mathrm{m}$
metf	Mean depth of furrows	Furrow	Height	$\mu \mathrm{m}$
FLTt	Peak to valley flatness deviation of the surface (Gaussian Filter, 0.025 mm)	ISO 12781	Height	$\mu \mathrm{m}$
FLTp	Peak to reference flatness deviation (Gaussian Filter, 0.025 mm)	ISO 12781	Height	$\mu \mathrm{m}$
FLTv	Reference to valley flatness deviation (Gaussian Filter, 0.025 mm)	ISO 12781	Height	$\mu \mathrm{m}$
FLTq	Root mean square flatness deviation (Gaussian Filter, 0.025 mm)	ISO 12781	Height	$\mu \mathrm{m}$
Spc	Arithmetic mean peak curvature	ISO 25178	Peak sharpness	1/ $\mu \mathrm{m}$
Smc	Inverse areal material ratio ($p=10 \%$)	ISO 25178	Plateau size	$\mu \mathrm{m}$
Smr	Areal material ration, bearing area at given height ($\mathrm{c}=1 \mu \mathrm{~m}$ under the highest peak)	ISO 25178	Plateau size	$\mu \mathrm{m}$
Sdq	Root mean square gradient	ISO 25178	Slope	no unit
Sdv	Closed dale volume	ISO 25178	Volume	$\mu \mathrm{m}^{3}$
Shv	Closed hill volume	ISO 25178	Volume	$\mu \mathrm{m}^{3}$
Vm	Material volume at a given material ratio ($p=10 \%$)	ISO 25178	Volume	$\mu \mathrm{m}^{3} / \mu \mathrm{m}^{2}$
Vmp	Material volume of the peaks	ISO 25178	Volume	$\mu \mathrm{m}^{3} / \mu \mathrm{m}^{2}$
Vme	Material volume of the core at given material ratio ($p=10 \%, q=80 \%$)	ISO 25178	Volume	
$V \nu$	Void volume at a given material ratio ($p=10 \%$)	ISO 25178	Volume	$\mu \mathrm{m}^{3} / \mu \mathrm{m}^{2}$
$V v c$	Void volume of the core ($p=10 \%, q=80 \%$)	ISO 25178	Volume	$\mu \mathrm{m}^{3} / \mu \mathrm{m}^{2}$
$V \nu v$	Void volume of the valley at a given material ratio ($p=80 \%$)	ISO 25178	Volume	$\mu \mathrm{m}^{3} / \mu \mathrm{m}^{2}$

Table S2. General linear models for natural diets with the variables Diet and Tooth, as well as the interaction between them, as fixed effects. $\mathrm{Lf}=$ lucerne fresh, $\mathrm{Ld}=$ lucerne dry, $\mathrm{Gf}=$ grass fresh, $\mathrm{Gd}=$ grass dry, $\mathrm{Bf}=$ bamboo fresh, $\mathrm{Bd}=$ bamboo dry. *ranked data, ${ }^{\circ}$ log-transformed data. Please see separate supplementary excel file.

Click here to download Table S2

Table S3. General linear models for pelleted diets with the variables Diet and Tooth, as well as the interaction between them, as fixed effects. IsoL = lucerne pellet, $\mathrm{C}=$ abrasive-free control pellet, $4 \mathrm{sS} 4 \%$ small quartz, $8 \mathrm{sS} 8 \%$ small quartz, 41S 4\% large quartz, 4IVA 4\% large volcanic ash. *ranked data, ${ }^{\circ}$ log-transformed data. Please see separate supplementary excel file.

Click here to download Table S3

Table S4. Random draws comprising either $\mathbf{2 5 \%}$ or $\mathbf{7 5 \%}$ of all teeth from natural diet groups. ${ }^{\text {a }}$ Number of random draws differs from 10000 because random samples that did not cover all 6 diets were discarded. ${ }^{\mathrm{b}}$ Spearman's rank correlation coefficient of the diet ranking based on 100% of available teeth compared to the diet ranking based on a subsample. ${ }^{\text {c Proportion of comparisons of the subsample diet ranking with the } 100 \% \text { diet }}$ ranking that produced significant correlations (at $P<0.05$). Parameters with a proportion of ≥ 0.70 set in bold. Please see separate supplementary excel file.

Click here to download Table S4

Table S5. Random draws comprising either $\mathbf{2 5 \%}$ or $\mathbf{7 5 \%}$ of all teeth from pelleted diet groups. ${ }^{\text {a }}$ Number of random draws differs from 10000 because random samples that did not cover all 6 diets were discarded. ${ }^{\mathrm{b}}$ Spearman's rank correlation coefficient of the diet ranking based on 100% of available teeth compared to the diet ranking based on a subsample. ${ }^{\text {c Proportion of comparisons of the subsample diet ranking with the } 100 \% \text { diet }}$ ranking that produced significant correlations (at $P<0.05$). Parameters with a proportion of ≥ 0.70 set in bold. Please see separate supplementary excel file.

Click here to download Table S5

Movie 1. Guinea pigs feeding on fresh grass. Note the continuous ingestion of grass blades ('conveyor belt' feeding strategy).

