## **Supplementary Materials and Methods**

Proximate Analysis

Frozen fish remains were homogenized using a Fisher Brand Bead Mill 24 and subsamples of the homogenate were weighed and freeze dried (Labconco Lyophilizer). *Protein:* Protein content was estimated in triplicate (intra-assay CV% <10%) using a BCA assay with a 72% TCA precipitation (Pierce BCA kit, ThermoFisher Scientific, MA, USA), where absorbance was measured at 562 nm. *Lipids:* Lipid content was estimated using a chloroform:methanol extraction as described in Mann and Gallager, 1985 and Johnson et al, 2017. Lipids from 50 mg of freeze-dried homogenized sample were extracted using 100 ul milliQ water and 1.5 ml chloroform:methanol (1:2) (vortexed, incubated at 4°C, centrifuged at 4000 rpm for 5 min). The supernatant was removed and remaining sample was re-extracted in 1.5 ml chloroform:methanol (2:1). The supernatants were pooled, mixed with 950 ul NaCl (0.7%), incubated at 4°C for 30 min, then centrifuged (4000 rpm, 5 min), and the volume of the bottom layer was measured. Dried subsamples of the bottom layer were used to extrapolate lipid content to the entire sample. *Ash Content:* Ash content was determined by drying freeze-dried samples overnight at 100°C to account for any moisture that returned during sample storage. Samples were then weighed (~30 mg) before being combusted in a muffle furnace at 450°C for 12 h and then re-weighed.

**Table S1**. Dietary and whole-body Proximate composition (% wet weight)

| Dietary Proximate composition (% wet weight)    |                  |                  |                                   |                  |  |  |  |  |  |
|-------------------------------------------------|------------------|------------------|-----------------------------------|------------------|--|--|--|--|--|
|                                                 | Experiment 1     |                  | Experiment 2                      |                  |  |  |  |  |  |
|                                                 | Ulva             | Artemia          | Ulva                              | Artemia          |  |  |  |  |  |
| % Moisture                                      | $82.04 \pm 1.63$ | $87.48 \pm 0.91$ | $75.33 \pm 3.81$ $86.83 \pm 0.38$ |                  |  |  |  |  |  |
| % Protein                                       | $1.47 \pm 0.27$  | $4.75 \pm 0.51$  | $1.95 \pm 0.88$                   | $5.59 \pm 0.62$  |  |  |  |  |  |
| % Lipid                                         | $0.42 \pm 0.05$  | $1.23 \pm 0.14$  | $0.55 \pm 0.10$                   | $1.84 \pm 0.08$  |  |  |  |  |  |
| % Ash                                           | $10.71 \pm 1.87$ | 1.44 ± NA        | 9.93 ± NA                         | $1.78 \pm 0.04$  |  |  |  |  |  |
| Whole body Proximate composition (% wet weight) |                  |                  |                                   |                  |  |  |  |  |  |
|                                                 | 12°C             |                  | 20°C                              |                  |  |  |  |  |  |
|                                                 | Carnivorous      | Omnivorous       | Carnivorous                       | Omnivorous       |  |  |  |  |  |
| % Moisture                                      | $70.15 \pm 1.15$ | $72.25 \pm 1.40$ | $72.98 \pm 0.74$                  | $71.79 \pm 0.45$ |  |  |  |  |  |
| % Protein                                       | $13.40 \pm 1.09$ | 13.91 ± 1.21     | 12.61 ± 1.45                      | $10.76 \pm 0.85$ |  |  |  |  |  |
| % Lipid                                         | $3.88 \pm 0.41$  | $3.08 \pm 0.25$  | $3.70 \pm 0.63$ $3.93 \pm 0.10$   |                  |  |  |  |  |  |
| % Ash                                           | $5.45 \pm 0.84$  | $4.31 \pm 0.50$  | $4.60 \pm 0.60$                   | $5.26 \pm 0.60$  |  |  |  |  |  |

Represented are means and standard error values for dietary proximate composition in *Ulva* sp., *Artemia* sp., and proximate body composition from whole opaleye from experiments 1 and 2. Proximate body composition were statistically analyzed using 2-way ANOVA and no significant differences were found between treatment groups. When sample size <3 standard error was not calculated and is listed as NA.

Table S2. AIC Outputs for Polynomial Curves.

| AIC outputs for warm ABT test f <sub>hmax</sub> polynomial curves |                                                   |    |            |            |  |  |  |
|-------------------------------------------------------------------|---------------------------------------------------|----|------------|------------|--|--|--|
| Model                                                             | Formula                                           |    | AIC        | ΔAIC       |  |  |  |
| Model 1                                                           | poly(acute_temp, 3) * diet * temp + (1   fish_id) | 18 | 5282.61153 | 0          |  |  |  |
| Model 2                                                           | poly(acute_temp, 3) * temp + diet + (1   fish_id) | 11 | 5295.12706 | 12.515531  |  |  |  |
| Model 3                                                           | poly(acute_temp, 3) * temp + (1   fish_id)        | 10 | 5297.84122 | 15.2296905 |  |  |  |
| Model 4                                                           | poly(acute_temp, 2) * diet * temp + (1   fish_id) | 14 | 5331.73874 | 49.1272062 |  |  |  |
| Model 5                                                           | poly(acute_temp, 3) * diet + temp + (1   fish_id) |    | 5425.26489 | 142.653365 |  |  |  |
| Model 6                                                           | poly(acute_temp, 4) + temp + diet + (1   fish_id) |    | 5427.25882 | 144.64729  |  |  |  |
| Model 7                                                           | poly(acute_temp, 4) + temp * diet + (1   fish_id) |    | 5428.15216 | 145.540635 |  |  |  |
| Model 8                                                           | poly(acute_temp, 3) + temp + diet + (1   fish_id) | 8  | 5429.2756  | 146.664069 |  |  |  |
| Model 9                                                           | poly(acute_temp, 3) + temp * diet + (1   fish_id) | 9  | 5430.17554 | 147.564011 |  |  |  |
| Model 10                                                          | poly(acute_temp, 3) + temp + (1   fish_id)        | 7  | 5432.27141 | 149.659875 |  |  |  |
| Model 11                                                          | poly(acute_temp, 3) + diet + (1   fish_id)        | 7  | 5433.3873  | 150.775766 |  |  |  |
| Model 12                                                          | poly(acute_temp, 3) + (1   fish_id)               | 6  | 5435.91176 | 153.300235 |  |  |  |
| Model 13                                                          | poly(acute_temp, 2) + temp + diet + (1   fish_id) | 7  | 5491.9684  | 209.356872 |  |  |  |
| Model 14                                                          | poly(acute_temp, 2) + temp * diet + (1   fish_id) | 8  | 5492.77923 | 210.167701 |  |  |  |
| Model 15                                                          | acute_temp + temp + diet + (1   fish_id)          | 6  | 5742.45159 | 459.840058 |  |  |  |
| Model 16                                                          | acute_temp + temp * diet + (1   fish_id)          | 7  | 5743.27212 | 460.660589 |  |  |  |
| Model 17                                                          | acute_temp + temp + (1   fish_id)                 | 5  | 5745.43438 | 462.822848 |  |  |  |
| Model 18                                                          | acute_temp + diet + (1   fish_id)                 | 5  | 5749.62894 | 467.017406 |  |  |  |
| Model 19                                                          | acute_temp + (1   fish_id)                        | 4  | 5751.89944 | 469.287913 |  |  |  |
| AIC outputs for cold test f <sub>hmax</sub> polynomial curves     |                                                   |    |            |            |  |  |  |
| Model                                                             | Formula                                           | df | AIC        | ΔAIC       |  |  |  |
| Model 1                                                           | poly(acute_temp, 4) + diet + (1   fish_id)        | 8  | 1620.06402 | 0          |  |  |  |
| Model 2                                                           | poly(acute_temp, 4) * diet + (1   fish_id)        | 12 | 1623.74238 | 3.67835332 |  |  |  |
| Model 3                                                           | poly(acute_temp, 3) + diet + (1   fish_id)        | 7  | 1636.74603 | 16.6820023 |  |  |  |
| Model 4                                                           | poly(acute_temp, 3) * diet + (1   fish_id)        | 10 | 1639.36915 | 19.3051258 |  |  |  |
| Model 5                                                           | poly(acute_temp, 3) + (1   fish_id)               | 6  | 1640.02832 | 19.9642973 |  |  |  |
| Model 6                                                           | poly(acute_temp, 2) * diet + (1   fish_id)        | 8  | 1640.27173 | 20.2077023 |  |  |  |
| Model 7                                                           | poly(acute_temp, 2) + diet + (1   fish_id)        | 6  | 1641.6658  | 21.6017758 |  |  |  |
| Model 8                                                           | acute_temp + diet + (1   fish_id)                 | 5  | 1992.02421 | 371.960185 |  |  |  |
| Model 9                                                           | acute_temp + (1   fish_id)                        | 4  | 1994.25531 | 374.191287 |  |  |  |

Represented are model formulas as input into R and AIC output results. df = degrees of freedom, AIC = Akaike Information Criterion  $\triangle$ AIC = AIC(model)—AIC(min AIC value), acute\_temp = acute temperature, fish\_id = individual fish.



**Fig. S1.** Figure illustrating repeatability of sprint performance across individuals. Each dot indicates a max sprint performance (cm s<sup>-1</sup>) calculated from an individual sprint trial. Colors indicate treatments with dark blue (carnivorous diet at 12°C), dark green (omnivorous diet at 12°C), light blue (carnivorous diet at 20°C), light green (omnivorous diet at 20°C).



**Fig. S2.** Performance in opaleye acclimated to 12°C or 20°C and fed either a carnivorous (blue) or omnivorous (green) diet. Presented are **A**) sprints measured as speed in cm s<sup>-1</sup> and **B**) sprints measured as speed in BL s<sup>-1</sup>, **C**) Growth rate (average fish mass (g) gained per week per tank) **D**) Lipid Peroxidation (LPO) in liver tissue measured as malondialdehyde concentration (MDA) in μmol gram<sup>-1</sup> of liver tissue. In panel A, B, D box plots represent interquartile ranges (boxes and whiskers), median values (solid lines) and outliers (> 1.5 beyond interquartile range) are plotted as data points outside the whiskers. In panel C, large circles and triangles indicate mean (± SEM) values for the carnivorous (*Artemia* sp.) and omnivorous diet treatments (*Artemia* sp. and *Ulva* sp.), respectively.



**Fig. S3.** Lactate dehydrogenase (LDH) activity in  $\mu$  mol per gram wet white muscle tissue weight in opaleye acclimated to 12°C (dark colors) or 20°C (light colors) and fed either a carnivorous (*Artemia* sp., represented as blues) or omnivorous diet (*Artemia* sp. and *Ulva* sp., represented as greens). Circles represent mean values and error bars indicate SEM. For each sample, LDH activity was measured at 5 different temperatures (8, 12, 20, 26, 32°C). Lactate dehydrogenase activity was higher at 20°C compared to 12°C but did not differ across diets. Lactate dehydrogenase activity also increased with acute temperature exposure. Acute temp: df = 4,  $\chi^2$  = 1061.711, p<0.001; acclimation temp: df = 1,  $\chi^2$  = 5.132, p = 0.023; diet: df = 1,  $\chi^2$  = 0.172, p = 0.679; acute temp × acclimation temp: df = 4,  $\chi^2$  = 22.526, p < 0.001.

## References

**Johnson, J.S., Clements K.D., and Raubenheimer, D.,** (2017). The Nutritional Basis of Seasonal Selective Feeding by a Marine Herbivorous Fish. *Mar. Biol.* **164,** 201.

Mann, R., and Gallager, S.M., (1985). Physiological and biochemical energetics of larvae of Teredo navalis L. and Bankia gouldi (Bartsch) (Bivalvia: Teredinidae). *J. Exp. Mar. Biol. Ecol.* **85**, 211-228.