Table S1. **List of studies that investigated adaptive adjustments in signal design.** Summaries of behaviors studies of jamming avoidance responses (JAR) in weakly electric fish. This list is an overview of papers describing jamming avoidance and active jamming literature in weakly electric fish of both lineages. It does not include all papers on the subject, (notably the extensive neurophysiologic studies into the mechanisms of the JAR are not included) but is rather an overview of behavioral reports and field studies describing JAR behaviors. Abbreviations: IPI- inter-pulse interval

						JAR		
Species/Lineage	Electrol ocation type	Stud y Site	Number of fish	Source of interference	Type of interference	Spectral	Temporal	Author/Year
Gymnarchus nilocticus/	wave	lab	Single	Mimic EOD	Passive	Bidirectional frequency shift		(Bullock et al., 1975)
Morymyrid	wave	Lab	Single	Mimic EOD	Passive	Bidirectional frequency Shift		(Metzner, 1993)
Gnathonemus petersii/	pulse	lab	Single+pairs	Mimic EOD + Conspecific	Passive		echoing	(Russell et al., 1974)
Mormyrid	Pulse	Lab	Pairs	Conspecific	Active		Echoing	(Russell et al., 1974)
Brienomyrus niger/ Mormyrid	pulse	lab	Single+pairs	Mimic EOD+Conspecific	Passive		Bidirection al IPI shift+echoi ng	(Heiligenberg, 1976)
Pollimyrus isidori/Mormyrid	Pulse	Lab	Single	Mimic EOD	Passive		echoing	(Kramer, 1978)
Hypopygus sp./Gymnotid	Pulse	lab	Single	Mimic EOD	Passive		Bidirection al IPI shift	(Heiligenberg, 1974)
Gymnotus carapo/ Gymnotid	Pulse	Lab	Single	Mimic EOD	Passive		Bidirection al IPI shift	(Westby, 1975)
Gymnotus carapo/ Gymnotid	Pulse	Lab	Pairs	Conspecific	Passive		Bidirection al IPI shift	(Westby, 1979)
Brachyhypopmus sulliv ani/Gymnotid	Pulse	Lab	Single	Mimic EOD	Passive		IPI Decrease	(Field et al., 2019)

	1	1			1			1
Microsternarchus cf. bi lineatus/ Gymnotid	Pulse	Lab	Single	Mimic EOD	Active		Bidirection al IPI shift	(Field et al., 2019)
Steatogenys elegans/Gymnotid	Pulse	Lab	Single	Mimic EOD	Active		Bidirection al IPI shift	(Field et al., 2019)
Sternopygus	wave	lab	single	Mimic EOD	Passive	No JAR observed		(Bullock et al., 1972)
sp./Gymnotid	wave	lab	single	Mimic EOD	Passive	No JAR observed		(Matsubara and Heiligenberg, 1978)
	wave	Lab	Single	Mimic EDO	Passive	Bidirectional frequency shift		(Watanabe and Takeda, 1963)
Eigenmannia viscerens/Gymnotid	Wave	Lab	Single	Mimic EOD	Passive	Bidirectional frequency Shift		(Bullock et al., 1972)
	Wave	Lab	Single	Multiple Mimic EODs	Passive	Bidirectional frequency Shift		(Partridge and Heiligenberg, 1980)
	Wave	Lab	Single	Multiple Mimic EODS	Passive	Bidirectional frequency Shift (Social Envelope Response)		(Stamper et al., 2012)
Eigenmannia vicentespelea/ Gymnotid	Wave	Field	Groups	Conspecific	Passive	Few JARS observed		(Fortune et al., 2020)
Eigenmannia trilineata/ Gymnotid	Wave	Field	Groups	Conspecific	Passive	Few JARS observed		(Fortune et al., 2020)
Distocyclus conirostris/Gymnotid	Wave	Lab	Single	Mimic EOD	Passive	Predominately downwards frequency shift		(Petzold et al., 2018)
Apteronotus sp./Gymnotid	Wave	Lab	Single	Mimic EOD	Passive	Upwards frequency shift		(Bullock et al., 1972)
Apeteronotus macrostomas/Gymnot id	Wave	Field	Groups	Conspecific	Active	Upwards frequency shift		(Benda, 2020)
Apteronotus leptorynchus/ Gymnotid	Wave	Lab	Single	Mimic EOD	Passive	Upwards frequency shift		(Bullock et al., 1972)

_
⊆
0
-
Ö
ĕ
╚
_
0
4
\geq
ᅩ
Ita
Φ
$\overline{}$
⊆.
Φ
ō
Ф
\neg
S
٠,
5
6
logy
ology
ology
logy
Biology
al Biology
tal Biology
ntal Biology
ental Biology
nental Biology
mental Biology
rimental Biology
erimental Biology
perimental Biology
sperimental Biology
xperimental Biology
sperimental Biology
f Experimental Biology
xperimental Biology
l of Experimental Biology
al of Experimental Biology
l of Experimental Biology
al of Experimental Biology

Wave	Lab	Single	Mimic EOD	Passive	Upwards frequency shift	(Dye, 1987)
Wave	Lab	Pairs	Conspecific	Active	Upwards frequency shift	(Zakon et al., 2002)
Wave	Lab	Pairs	Conspecific	Active	Upwards frequency shift	(Tallarovic and Zakon, 2005)

Table S2. List of studies that investigated adaptive adjustments in signal design. Summaries of behaviors studies of jamming avoidance responses (JAR)* and adaptive signal responses (ASA) in echolocating bats. This is meant to give a broad overview of the major findings of numerous papers on the topic of jamming and jamming avoidance in electric fish and bats. It is important to note that authors may use different methods for obtaining spectrotemporal parameter values and care should be taken if making direct comparisons. Abbreviations are as follows: F_{max} = highest frequency in a call, sometimes referred to as start frequency in FM bats (Frequency-Modulated bats produce frequency sweeping echolocation calls), denoted as F_{start} ; F_{min} = lowest frequency in a call, sometimes referred to as end frequency in FM bats, denoted as F_{end} ; F_{bw} = total bandwidth of a call; F_{peak} = the peak frequency of a call; F_{call} = the dominant frequency used by CF-FM bats (bats that produce calls with both constant frequency and frequency modulated portions) in the CF component of the call.

*Not all studies were originally conducted in an effort to quantify bat JARs.

Species	Dominant Echolocation Type	Study Site	Number of bats	Source of interference	Type of interference	Task	Spectral	Temporal	Intensity	Author/Year
Lasiurus borealis	FM	Field	Pairs	Bat (Conspecific)	Passive	Free Flight	Increase: F _{start} , F _{peak}	Increase: IPI Decrease: call duration		Obrist 1995
Tadarida teniotis	FM	Field	Pairs	Bat (Conspecific)	Passive	Free Flight	Bidirectional frequency shifts	None		Ulanovsky et al. 2004
Taphozous perforatus	FM	Field	Pairs	Bat (Conspecific)	Passive	Free Flight	None	None		Ulanovsky <i>et</i> al. 2004
		Field	Group	Recording (Conspecific)	Passive	Free Flight	Increase: F _{call} , F _{bw}	Decrease: IPI, call duration		Gillam et al. 2007
Tadarida	FM	Lab	Single	Recording (Conspecific)	Passive	Free Flight	Not reported	Reduce emission rate		Jarvis et al. 2013
brasiliensis		Lab	Single	Recording (Broadband noise)	Passive	Free Flight	Not reported	Reduce emission rate		Jarvis <i>et al</i> . 2010

		Lab	Single	Recording (Broadband noise)	Passive	Stationary	Increase: F _{start} , F _{bw} , F _{peak} Decrease: F _{end}	Increase: call duration	Increase: amplitude	Tressler and Smotherman 2009
		Field	Pairs	Bat (Conspecific)	Passive	Free Flight	Greater difference F _{peak}	None		Ratcliffe <i>et al.</i> 2004
		Lab	Pairs	Bat (Conspecific) Recording (Conspecific)	Passive	Obstacle avoidance	Not reported	Reduce emission rate		Adams et al. 2017
		Field	Group	Recording (Conspecific)	Active	Tethered prey capture	Increase: F _{peak} , F _{min} , F _{max}	None		Corcoran and Conner 2014
		Field	Group	Recording (CF and FM sounds)	Passive	Free Flight	Increase: F _{start} , F _{end} , F _{max}	Not reported		Gillam and Montero 2016
Rhinopoma	CF FN4	Field	Group	Bat (Conspecific)	Passive	Free Flight	Increase: F _{call} , F _{bw}	Decrease: call duration		Cvikel, Levin, et al. 2015
microphyllum	CF-FM	Lab	Single	Noise	Passive	Free Flight	None	Not reported	Increase: intensity	Schmidt and Joermann 1986
		Lab	Pairs	Bat (Conspecific)	Passive	Tethered prey capture	Increase: F _{start} , F _{end} , F _{bw}	None		Chiu <i>et al</i> . 2009
Eptesicus fuscus	FM	Lab	Single	Moth Prey	Active	Tethered prey capture	None	Decrease: buzz phase duration Increase: call duration		Corcoran et al. 2011
		Lab	Pairs	Bat (Conspecific)	Passive	Tethered prey capture	Silence	Silence		Chiu <i>et al</i> . 2008

		Lab	Single	Recording (CF tone)	Passive	Non- flying/target discrimination	Bidirectional shift of QCF component	None	Bates et al. 2008
		Lab	Single	Recording (Heterospecific)	Active	Tethered prey capture	Increase: F _{peak} Decrease: F _{bw}	Decrease: sweep rate Increase: call duration	Jones <i>et al</i> . 2018
Pipistrellus abramus	FM	Lab	Single	Bat (Conspecific) Recording (Conspecific)	Passive	Free Flight	Increase: F _{end}	Alter emission timing	Takahashi <i>et</i> al. 2014
Corynorhinus (Plecotus) townsendii	FM	Lab	Single	Recording (Broadband noise)	Passive	Obstacle avoidance	Not reported	Not reported	Griffin et al. 1963
Pipistresllus nathusii	FM	Field	Group	Bat (Conspecific) Bat (Heterospecific)	Passive	Free Flight	Increase: F _{peak}	Not reported	Necknig and
Pipstrellus		Field	Group	Bat (Conspecific) Bat (Heterospecific)	Passive	Free Flight	Increase: F _{peak}	Not reported	Zahn 2011
pipistrellus	FM	Lab	Group	Bat (Conspecific) Bat (Heterospecific)	Passive	Free Flight	Increase: differences in F _{peak}	None	Bartonička <i>et</i> al. 2007

		Field	Group	Bat (Conspecific)	Passive	Free Flight	Increased: differences in CF-portion of call	Not reported		Miller and Degn 1981
Balantiopteryx plicata	CF-FM	Field	Group	Bat (Conspecific)	Passive	Free Flight	Increase: difference F _{peak} , F _{max}	Not reported		Ibáñez <i>et al.</i> 2004
Rhinopoma hardwickei	CF-FM	Field	Group	Bat (Conspecific)	Passive	Free Flight	Utilized 3 different CF bands	Not reported		Habersetzer 1981
Pipistrellus kuhlii	FM	Lab	Single	Recording (Conspecific) Recording (Self)	Passive	Landing on platform; Obstacle avoidance	Increased: F _{bw}	Increase: call duration (QCF portion)	Increase: intensity	Amichai <i>et al</i> . 2015
Craseonycteris thonglongyai	CF-FM	Field	Group	Bat (Conspecific)	Passive	Free Flight	None	None		Surlykke <i>et al</i> . 1993
	CF-FM	Lab	Group	Bat (Conspecific)	Passive	Free Flight	Bidirectional shift	Not reported		Jones <i>et al</i> . 1994
Hipposideros speoris	CF-FM	Lab	Single	Recording (Conspecific) Recording (Self)	Passive	Obstacle avoidance	Small scale frequency changes	Not reported		Jones et al.
Hipposideros fulvis	CF-FM	Lab	Single	Recording (Conspecific) Recording (Self)	Passive	Obstacle avoidance	Small scale frequency changes	Not reported		1994
Asella tridens	CF-FM	Lab	Group	Bat (Conspecific)	Passive	Free Flight	None	Not reported		Jones <i>et al</i> . 1993

Miniopterus fuliginosus	FM	Lab	Single	Recording (FM sounds)	Passive	Free Flight	Increased: F _{end}	Not reported		Hase <i>et al</i> . 2016
		Lab	Group	Bat (Conspecific)	Passive	Free Flight	Decrease: F _{min} in terminal FM component	Increase: duration of terminal FM component	Decrease: intensity	
Rhinolophus capensis	CF-FM	Lab	Group	Bat (Heterospecific)	Passive	Free Flight	Decrease: F _{min} in terminal FM component	Decrease: call duration Increase: duration of terminal FM component		Fawcett et al. 2015