Supplementary materials and methods ## **Description for cADL calculation** The cADL was estimated by applying the methodology described in Kooyman (1989) and using specific estimates of tissues and oxygen-binding proteins proportions for walruses when available. The following assumptions were used to estimate the tissues (blood, muscle, and lungs) O₂ storage capacity and utilization during the dive. The total blood volume (BV, l) was calculated using the mass-specific estimation of 0.106 l blood kg⁻¹ (Lenfant et al., 1970). The estimated proportions of arterial and venous blood were considered as 33% and 67% respectively (Lenfant et al., 1970). The initial and final arterial haemoglobin (Hb) saturation were assumed to be 95% and 20%, respectively. The initial venous O₂ content was assumed to be 5 vol% less than the initial arterial O₂ content, with a final venous O₂ content of zero (Ponganis, 2011). The Hb content of adult female walruses has been reported to be 16.8 g Hb 100 ml⁻¹ of blood (Wołk and Kosygin, 1979), and the oxygen-binding capacity is 1.34 ml O₂ g⁻¹ Hb (Kooyman, 1989). The final equations utilized for the calculation of total volume of blood O₂ (l) were: 1) Arterial $$O_2 = (BV \times M_b \times 0.33) \times (0.95 - 0.20 \text{ saturation}) \times ([Hb] \times 0.00134)$$ 2) Venous $$O_2 = (BV \times M_b \times 0.67) \times (initial arterial O_2 content - 5vol\%)$$ The total muscle O_2 storage capacity was estimated by calculating the total muscular myoglobin (Mg) content. The total muscle mass (kg) was calculated as 0.2410 $M_b^{1.084}$, an equation derived from excised tissues of Atlantic walruses (Knutsen and Born, 1994). The specific Mg content for the longissimus dorsi muscle in adult walruses has been estimated to be 3.8 g Mg 100 g⁻¹ of wet muscle mass (Noren et al., 2015) and was assumed equal for all muscle groups. However, this approach can potentially overestimate the overall muscle O_2 storage capacity as lower levels of Mg have been reported for non-swimming muscles in pinnipeds (Kanatous et al., 1999). The Mg has been reported to possess the same oxygen-binding capacity than that reported for Hg (Kooyman, 1989). Thus, the equation used for the calculation of total volume of muscle O_2 (I) was: 3) Muscle O_2 = Total muscle mass x ([Mg] x 0.00134) The total lung O_2 storage capacity was computed by calculating the estimated total lung capacity (TLC_{est}, 1) using previous equation for marine mammals (TLC_{est} = 0.135 $M_b^{0.92}$, Fahlman et al., 2011; Kooyman, 1973). The diving lung volume was assumed to be 50% of TLC_{est} for pinnipeds with a 15% of available O_2 concentration in the lungs to be extracted during the dive (Ponganis, 2011). The final equation to yield the calculation of total volume of lung O_2 (l) was: 4) Lung $$O_2 = M_b \times TLC_{est} \times 0.5 \times 0.15$$ All calculations were made using the overall average M_b for the three participating female walruses during the experiments (835 kg). The total body O_2 storage capacity (37.62 l O_2) was computed by summing the estimated O_2 storage capacity for each tissue. The cADL was computed by dividing the resulted total body O_2 storage capacity by the measured average DMR_{Swim} (4.91 l O_2 min⁻¹). ## **Supplementary tables** Table S1. Body mass and respiratory variables for each metabolic experiment | Experiment | M _b (kg) | f _R (breaths min ⁻¹) | $\dot{V}CO_2$ (1 CO ₂ min ⁻¹) | RER | |-------------------------------|----------------------|---|--|---------------------------------------| | Floating at the water surface | 844 ± 124 (697-1030) | 5.8 ± 2.3 (3.1-9.6) | $4.47 \pm 0.94 \\ (2.93-5.92)$ | 0.97 ± 0.05
(0.90-1.04) | | Stationary dive | 827 ± 108 (697-967) | 6.0 ± 1.9 (3.7-9.9) | 3.58 ± 0.62 (2.84-4.47) | 0.94 ± 0.07
(0.81-1.06) | | Subsurface swimming | 834 ± 113 (688-972) | 6.6 ± 1.9 (3.6-9.7) | $4.58 \pm 0.58 \\ (3.67-5.49)$ | $0.94 \pm 0.06 \\ (0.85\text{-}1.05)$ | For the three adult female Pacific walruses participating in metabolic measurements while floating at the water surface, and after performing stationary dives and horizontal subsurface swimming (n = 15 for each respirometry experiment), average (\pm s.d.) and ranges of: body mass (M_b), respiratory frequency (f_R), CO₂ production rate ($\dot{V}CO_2$) and respiratory exchange ratio (RER). | requirements using obtained relati | | | | | | | | |------------------------------------|---|---|--|--|--|--|--| | ANIMAL
ID | MR _{Surface} (MJ day ⁻¹) | sMR _{Surface} (kJ kg ⁻¹ day ⁻¹) | DMR _{Stationary}
(MJ day ⁻¹) | sDMR _{Stationary}
(kJ kg ⁻¹ day ⁻¹) | DMR _{Swim}
(MJ day ⁻¹) | sDMR _{Swim}
(kJ kg ⁻¹ day ⁻¹) | | | 26005388 | 109.3 ± 13.4 | 154.0 ± 17.9 | 105.6 ± 9.4 | 149.9 ± 12.2 | 117.9 ± 8.0 | 167.9 ± 9.4 | | | 26005389 | 165.5 ± 20.2 | 166.6 ± 24.8 | 132.5 ± 6.9 | 138.1 ± 6.7 | 165.5 ± 5.9 | 171.0 ± 5.8 | | | 26005390 | 141.5 ± 26.4 | 171.3 ± 30.7 | 102.2 ± 13.4 | 124.8 ± 16.3 | 154.0 ± 3.7 | 185.2 ± 4.6 | | | Grand | 138.8 ± 30.6 | 164.0 ± 24.4 | 113.4 ± 16.9 | 137.6 ± 15.6 | 145.8 ± 21.7 | 174.7 ± 10.1 | | | Mean | (95.0-193.7) | (126.3-203.9) | (87.0-139.8) | (105.9-163.0) | (106.5-172.7) | (154.8-190.1) | | Table S2. Summary of metabolic measurements converted to daily energetic requirements using obtained RER. For each participating female Pacific walrus (Animal ID) and behaviour, average (\pm s.d) of measured metabolic rate (floating at the water surface: $MR_{Surface}$; stationary dives: $DMR_{Stationary}$; subsurface swimming: DMR_{Swim}) and mass-specific metabolic rate (floating at the water surface: $sMR_{Surface}$; stationary dives: $sDMR_{Stationary}$; subsurface swimming: $sDMR_{Swim}$). N=5 for all experiments with each individual. Overall average (\pm s.d) and ranges are also reported for each behaviour. ## References Fahlman, A., Loring, S. H., Ferrigno, M., Moore, C., Early, G., Niemeyer, M., Lentell, B., Wenzel, F., Joy, R. and Moore, M. J. (2011). Static inflation and deflation pressure-volume curves from excised lungs of marine mammals. *J. Exp. Biol.* **214**, 3822-3828. **Kanatous, S. B., DiMichele, L. V., Cowan, D. F. and Davis, R. W.** (1999). High aerobic capacities in the skeletal muscles of pinnipeds: adaptations to diving hypoxia. *J. Appl. Physiol.* **86**, 1247-1256. Knutsen, L. Ø. and Born, E. W. (1994). Body growth in Atlantic walruses (*Odobenus rosmarus rosmarus*) from Greenland. *J. Zool.* **234**, 371-385. **Kooyman, G. L.** (1973). Respiratory adaptations in marine mammals. *Am. Zool.* **13**, 457-468. **Kooyman, G. L.** (1989). *Diverse Divers: Physiology and Behavior*. Berlin: Springer-Verlag. **Lenfant, C., Johansen, K. and Torrance, J. D.** (1970). Gas transport and oxygen storage capacity in some pinnipeds and the sea otter. *Respir. Physiol.* **9**, 277-286. Noren, S. R., Jay, C. V., Burns, J. M. and Fischbach, A. S. (2015). Rapid maturation of the muscle biochemistry that supports diving in Pacific walruses (*Odobenus rosmarus divergens*). *J. Exp. Biol.* **218**, 3319-3329. Ponganis, P. J. (2011). Diving mammals. Compr. Physiol. 1, 517-535. Wolk, E. and Kosygin, G. M. (1979). A hematological study of the walrus, *Odobenus rosmarus*. *Acta Theriol. Sin.* **24**, 99-107.