Table S1. Magnetic field parameters in orientation experiments during autumn and spring migration seasons in 2019-2020. NMF – natural magnetic field (the geomagnetic field), VMF – vertical magnetic field. na – data missing. | Autumn migration 2019 | | | | | | Spring migration 2020 | | | | | | |-----------------------|---------------------|-----------------------------|-------|---------------------|---------------------|-----------------------|---------------------|-----------------------------|-------|---------------------|---------------------| | NMF | | | VMF | | | NMF | | | VMF | | | | Date | Total intensity, nT | Inclina-
tion,
°(deg) | Date | Total intensity, nT | Inclination, °(deg) | Date | Total intensity, nT | Inclina-
tion,
°(deg) | Date | Total intensity, nT | Inclination, °(deg) | | 14.08 | 50243 | 70.1 | 22.08 | 50257 | 89.9 | 11.04 | 50323 | 69.9 | 17.04 | 50358 | 89.9 | | 15.08 | 50257 | 70 | 24.08 | 50278 | 90 | 13.04 | 50350 | 69.9 | 18.04 | 50345 | 89.8 | | 16.08 | 50250 | 70 | 26.08 | 50273 | 89.8 | 14.04 | 50347 | 70.3 | 21.04 | 50369 | 89.7 | | 19.08 | na | na | 05.09 | 50285 | 89.9 | 15.04 | 50335 | 70.2 | 22.04 | 50363 | 89.6 | | 20.08 | 50257 | 69.8 | 06.09 | 50269 | 89.9 | 19.04 | na | na | 24.04 | 50374 | 89.9 | | 21.08 | 50259 | 69.9 | 11.09 | 50274 | 90 | 21.04 | 50347 | 70.2 | | | | | 22.08 | 50264 | 70.3 | 23.09 | na | na | 22.04 | 50360 | 70.1 | | | | | 23.08 | 50251 | 70.2 | 29.09 | 50291 | 89.9 | 24.04 | 50367 | 70.2 | | | | | 29.08 | 50245 | 69.7 | | | | 25.04 | 50358 | 70.2 | | | | | 30.08 | 50273 | 70.2 | | | | 27.04 | na | na | | | | | 02.09 | 50269 | 70 | | | | 28.04 | 50371 | 70.1 | | | | | 03.09 | na | na | | | | | | | | | | | 17.09 | 50271 | 70.2 | | | | | | | | | | | 19.09 | 50265 | 70 | | | | | | | | | | ## Figure S1. Visualization of results obtained using the Emlen funnels method. - (A) The bird was not active during the test. (B) The bird was active but disoriented. - (C) The bird was active, and chose the northern direction (360 deg). Figure S2. The results of bootstrap analysis. Each diagram represents a distribution of lengths of mean vectors that were calculated using a bootstrap technique (n = 100000, see the details in the main text of manuscript, Materials and methods section). (A) The distribution for birds from the group I, «celestial cues deprived group», in the VMF, autumn (Fig. 1C; 95 and 99 % quantiles for r mean are 0.23 - 0.66 and 0.37 - 0.75, respectively). (B) The distribution for birds from the group II, «stars deprived group», in the VMF, autumn (Fig. 1D; 95 and 99 % quantiles for r mean are 0.42 - 0.82 and 0.38 - 0.91, respectively). (C) The distribution for birds from the group Ia, «celestial cues deprived till spring group», in the VMF, spring (Fig. 2D; 95 and 99 % quantiles for r mean are 0.72 - 0.94 and 0.69 - 0.96, respectively). (D) The distribution for birds from the group II, «group with access to all celestial cues», in the VMF, spring (Fig. 2F; 95 and 99 % quantiles for r mean are 0.41 - 0.83 and 0.37 - 0.94, respectively). Vertical blue and green lines indicate 95 and 99 % quantiles, respectively. The red curve is a normal distribution, an orange dot is a length of the mean vector of the group in each experimental condition.