

Fig. S1. The time taken in minutes (latency) for a starving spider to attack aposymbiotic (Apo, n_{apo} = 62) and symbiotic (Sym, n_{Sym} = 64) beetles once introduced into the arena. Latency did not differ significantly between the treatments (GLMER: t = 0.722, p = 0.4704)

Fig. S2. Melanisation progression in symbiotic and aposymbiotic beetles from day 1 to 7 post-eclosion. Representative images of aposymbiotic (upper row) and symbiotic beetles (lower row).

Fig. S3. Survival probability of young (<24hours post-eclosion) and old (14 days post-eclosion) symbiotic and aposymbiotic beetles without exposure to *B. bassiana* (controls). Mortality was not significantly influenced by either symbiont status or age (Cox mixed-effects model, p=0.1073; p=0.2837, respectively, n_{apo} = 45, n_{sym} = 45).

Table S1. Impact of *Oryzaephilus surinamensis'* symbiont status and age on defence against the entomopathogenic fungus *B. bassiana*. Results of pairwise multiple comparisons following COX- mixed effects models. (Sym= symbiotic, Apo= Aposymbiotic)

Controls		Old Sym	Young Sym
	Old Apo	P = 0.980	P = 0.790
	Young Apo	P = 0.280	P = 0.400
Treatment		Old Sym	Young Sym
	Old Apo	0.720	P < 0.001
	Young Apo	P < 0.001	P < 0.001