

Fig. S1. Amino acid alignments for the three opsins. Amino acid alignments of the informative positions for (A) UV, (B) SW, and (C) LW opsins. The parallel substitutions occurring in the diurnal species/lineages are highlighted in yellow. The amino acid positions follow those of each orthologous opsin in M. sexta. Dots indicate identical residues to those of the top line. The transmembrane domains were deduced based on each orthologous opsin sequence of M. sexta, and the minimum distances between the retinal and the amino acid positions were estimated based on the 3D structure of jumping spider Rh1.

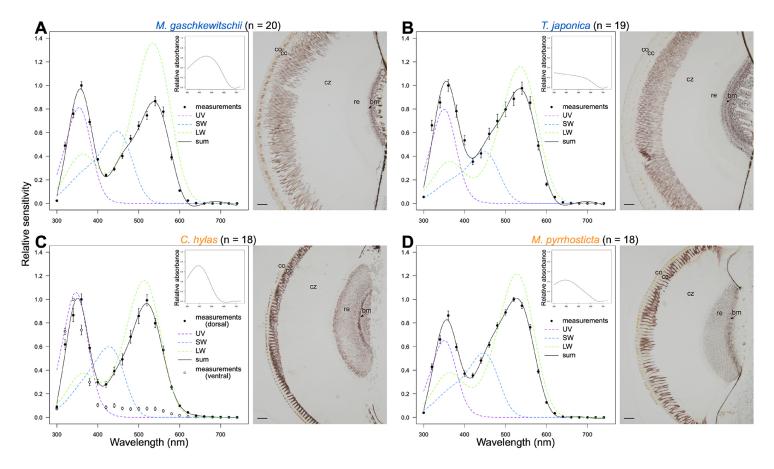


Fig. S2. Spectral sensitivities of the compound eyes determined by ERG and the absorption spectra of visual pigments estimated with the effect of screening pigments. In the (A, B) nocturnal and (C, D) diurnal species, filled circles indicate mean \pm SE of the measurements in multiple individuals, n, shown next to the species name. The open circles in panel C indicate the recorded sensitivity from the ventral eye region of *C*. *hylas* (n = 20: 16 males and 4 females). Dotted color lines are the absorption spectra of the individual visual pigments in the model fitting with the effect of the screening pigments. Solid line is the weighted sum of the three spectra minus the absorption spectrum of the screening pigments. Inset shows the spectrum of presumptive screening pigments. A frontal section of the compound eye is shown next to the spectral sensitivity. The clear zone (cz) separates the dioptric apparatus (crystalline cone, cc, and cornea, co) and the retina (re), where screening pigments reside. Arrow points to the pacificate of the basement membrane (hm). Scale har = 100 um

position of the basement membrane (bm). Scale bar = $100 \ \mu$ m.

The model fitting to the ERG data indicated that the contribution of UV and SW pigments were equally high, while LW pigments contributed most (Table 3; Table S3). The results fitted even better to the results of the expression ratios of the opsin genes (Fig. 2). The estimated λ_{max} values of UV and LW pigments were also similar: importantly, the shift direction and the amount both in LW pigments appear robust (Table 3; Table S3). On the other hand, for the estimated λ_{max} values of SW pigments the shift direction was opposite (Table 3; Table S3). This contradictory result is probably led by an inaccurate estimation due to the overlap of the absorption peak of SW pigments and the Gaussian mound in the screening pigments' absorption spectrum. Thus, measurement of the absorbance spectra of the screening pigments in the hawkmoths is warranted in the futu

Table S1. Hawkmoth sample information surveyed by RNA-seq

	-	-										
Sample ID	Species	Subfamily	Sampling location	Sampling date	Sampling method	Collector	Sex	Ecology	Tissues	Fixation date & time	No. of reads Experiment accession	no. Run accession no.
Mga1	Marumba gaschkewitschii echephron (Boisduval, 1875)	Smerinthinae	Yokosuka, Kanagawa, Japan (35°15'N, 139°37'E)	28/07/2014	Adult collection	T.A.	Male	Nocturnal	Adult eyes & brain	31/07/2014 12:00-13:00	27,175,728 DRX229139	DRR239257
Mga2	Marumba gaschkewitschii echephron (Boisduval, 1875)	Smerinthinae	Yokosuka, Kanagawa, Japan (35°15'N, 139°37'E)	28/07/2014	Adult collection	T.A.	Male	Nocturnal	Adult eyes & brain	01/08/2014 12:00-13:00	31,977,640 DRX229140	DRR239258
Mga3	Marumba gaschkewitschii echephron (Boisduval, 1875)	Smerinthinae	Yokosuka, Kanagawa, Japan (35°15'N, 139°37'E)	28/07/2014	Adult collection	T.A.	Male	Nocturnal	Adult eyes & brain	01/08/2014 12:00-13:00	30,222,302 DRX229141	DRR239259
Aoc1	Ambulyx ochracea Butler, 1885	Smerinthinae	Yokosuka, Kanagawa, Japan (35°15'N, 139°37'E)	21/07/2014	Adult collection	T.A.	Male	Nocturnal	Adult eyes & brain	24/07/2014 12:00-13:00	33,952,206 DRX229142	DRR239260
Aoc2	Ambulyx ochracea Butler, 1885	Smerinthinae	Yokosuka, Kanagawa, Japan (35°15'N, 139°37'E)	24/07/2014	Adult collection	T.A.	Male	Nocturnal	Adult eyes & brain	29/07/2014 12:00-13:00	28,472,930 DRX229143	DRR239261
Aoc3	Ambulyx ochracea Butler, 1885	Smerinthinae	Yokosuka, Kanagawa, Japan (35°15'N, 139°37'E)	28/07/2014	Adult collection	T.A.	Male	Nocturnal	Adult eyes & brain	31/07/2014 12:00-13:00	28,297,454 DRX229144	DRR239262
Chy1	Cephonodes hylas hylas (Linnaeus, 1771)	Macroglossinae	Higashikurume, Tokyo, Japan (35°45'N, 139°32'E)	31/08/2014	Adult collection	T.A.	Male	Diumal	Adult eyes & brain	01/09/2014 12:00-13:00	19,708,896 DRX229145	DRR239263
Chy2	Cephonodes hylas hylas (Linnaeus, 1771)	Macroglossinae	Higashikurume, Tokyo, Japan (35°45'N, 139°32'E)	13/09/2015	Adult collection	T.A.	Male	Diumal	Adult eyes & brain	14/09/2015 12:00-13:00	27,273,782 DRX229146	DRR239264
Chy3	Cephonodes hylas hylas (Linnaeus, 1771)	Macroglossinae	Higashikurume, Tokyo, Japan (35°45'N, 139°32'E)	14/09/2015	Adult collection	T.A.	Male	Diumal	Adult eyes & brain	15/09/2014 12:00-13:00	28,864,550 DRX229147	DRR239265
Haf1	Hemaris affinis (Bremer, 1861)	Macroglossinae	Hayama, Kanagawa, Japan (35°15'N, 139°36'E)	06/08/2014	Adult collection	T.A.	Male	Diumal	Adult eyes & brain	07/08/2014 12:00-13:00	31,536,052 DRX229148	DRR239266
Haf2	Hemaris affinis (Bremer, 1861)	Macroglossinae	Hayama, Kanagawa, Japan (35°15'N, 139°36'E)	02/09/2014	Adult collection	T.A.	Male	Diurnal	Adult eyes & brain	03/09/2014 12:00-13:00	29,844,236 DRX229149	DRR239267
Haf3	Hemaris affinis (Bremer, 1861)	Macroglossinae	Hayama, Kanagawa, Japan (35°15'N, 139°36'E)	06/09/2015	Adult collection	T.A.	Male	Diumal	Adult eyes & brain	07/09/2015 12:00-13:00	31,834,506 DRX229150	DRR239268
Nhi1	Neogurelca himachala sangaica (Butler, 1876)	Macroglossinae	Yokosuka, Kanagawa, Japan (35°15'N, 139°37'E)	05/08/2014	Adult collection	T.A.	Male	Diumal	Adult eyes & brain	06/08/2014 12:00-13:00	30,722,512 DRX229151	DRR239269
Nhi2	Neogurelca himachala sangaica (Butler, 1876)	Macroglossinae	Higashikurume, Tokyo, Japan (35°45'N, 139°32'E)	31/08/2015	Adult collection	T.A.	Female	Diumal	Adult eyes & brain	01/09/2015 12:00-13:00	26,655,558 DRX229152	DRR239270
Nhi3	Neogurelca himachala sangaica (Butler, 1876)	Macroglossinae	Higashikurume, Tokyo, Japan (35°45'N, 139°32'E)	14/09/2015	Adult collection	T.A.	Female	Diumal	Adult eyes & brain	15/09/2015 12:00-13:00	29,837,426 DRX229153	DRR239271
Dne1	Daphnis nerii (Linnaeus, 1758)	Macroglossinae	Ishigaki, Okinawa, Japan (24°20'N, 124°10'E)	27/09/2014	Larvae rearing	T.A.	Female	Nocturnal	Adult eyes & brain	14/10/2014 12:00-13:00	24,244,384 DRX229154	DRR239272
Dne2	Daphnis nerii (Linnaeus, 1758)	Macroglossinae	Ishigaki, Okinawa, Japan (24°20'N, 124°10'E)	27/09/2014	Larvae rearing	T.A.	Female	Nocturnal	Adult eyes & brain	19/10/2014 12:00-13:00	23,958,174 DRX229155	DRR239273
Dne3	Daphnis nerii (Linnaeus, 1758)	Macroglossinae	Ishigaki, Okinawa, Japan (24°20'N, 124°10'E)	27/09/2014	Larvae rearing	T.A.	Female	Nocturnal	Adult eyes & brain	20/10/2014 12:00-13:00	25,434,320 DRX229156	DRR239274
Mpy1	Macroglossum pyrrhosticta Butler, 1875	Macroglossinae	Hayama, Kanagawa, Japan (35°15'N, 139°36'E)	31/08/2015	Adult collection	T.A.	Male	Diurnal	Adult eyes & brain	01/09/2015 12:00-13:00	30,885,830 DRX229157	DRR239275
Mpy2	Macroglossum pyrrhosticta Butler, 1875	Macroglossinae	Hayama, Kanagawa, Japan (35°15'N, 139°36'E)	01/09/2015	Adult collection	T.A.	Male	Diumal	Adult eyes & brain	02/09/2015 12:00-13:00	36,915,156 DRX229158	DRR239276
Mbo1	Macroglossum bombylans Boisduval, 1875	Macroglossinae	Yokosuka, Kanagawa, Japan (35°15'N, 139°37'E)	04/08/2014	Adult collection	T.A.	Female	Diumal	Adult eyes & brain	05/08/2014 12:00-13:00	22,893,430 DRX229159	DRR239277
Mbo2	Macroglossum bombylans Boisduval, 1875	Macroglossinae	Hayama, Kanagawa, Japan (35°15'N, 139°36'E)	11/09/2015	Adult collection	T.A.	Male	Diumal	Adult eyes & brain	12/09/2015 12:00-13:00	25,896,542 DRX229160	DRR239278
Mbo3	Macroglossum bombylans Boisduval, 1875	Macroglossinae	Hayama, Kanagawa, Japan (35°15'N, 139°36'E)	15/09/2015	Adult collection	T.A.	Male	Diumal	Adult eyes & brain	16/09/2015 12:00-13:00	27,479,356 DRX229161	DRR239279
Aru1	Ampelophaga rubiginosa rubiginosa Bremer & Grey, 1853	Macroglossinae	Yokosuka, Kanagawa, Japan (35°15'N, 139°37'E)	21/07/2014	Adult collection	T.A.	Male	Nocturnal	Adult eyes & brain	23/07/2014 12:00-13:00	32,037,438 DRX229162	DRR239280
Aru2	Ampelophaga rubiginosa rubiginosa Bremer & Grey, 1853	Macroglossinae	Yokosuka, Kanagawa, Japan (35°15'N, 139°37'E)	21/07/2014	Adult collection	T.A.	Male	Nocturnal	Adult eyes & brain	23/07/2014 12:00-13:00	22,331,642 DRX229163	DRR239281
Aru3	Ampelophaga rubiginosa rubiginosa Bremer & Grey, 1853	Macroglossinae	Yokosuka, Kanagawa, Japan (35°15'N, 139°37'E)	28/07/2014	Adult collection	T.A.	Male	Nocturnal	Adult eyes & brain	02/08/2014 12:00-13:00	24,930,292 DRX229164	DRR239282
Tja1	Theretra japonica (Boisduval, 1869)	Macroglossinae	Yokosuka, Kanagawa, Japan (35°14'N, 139°35'E)	22/07/2014	Adult collection	T.A.	Male	Nocturnal	Adult eyes & brain	25/07/2014 12:00-13:00	27,381,900 DRX229165	DRR239283
Tja2	Theretra japonica (Boisduval, 1869)	Macroglossinae	Yokosuka, Kanagawa, Japan (35°14'N, 139°35'E)	22/07/2014	Adult collection	T.A.	Female	Nocturnal	Adult eyes & brain	25/07/2014 12:00-13:00	33,482,238 DRX229166	DRR239284
Tja3	Theretra japonica (Boisduval, 1869)	Macroglossinae	Yokosuka, Kanagawa, Japan (35°14'N, 139°35'E)	25/07/2014	Adult collection	T.A.	Male	Nocturnal	Adult eyes & brain	29/07/2014 12:00-13:00	30,437,216 DRX229167	DRR239285

Table S2. List of primers for PCR and sequencing

_	1		1 0			
Gene	Species	Purpose of use		Primer name Lengt		Sequences (5' -> 3')
UV	M. gaschkewitschii	PCR	External forward	<i>HUV_</i> F01	24	AATGGGCCCAGGAGCACTTCACTG
		PCR	External reverse	<i>HUV</i> _R01	24	TTAGCAGGTGCAGCCATAGTTGTC
	A. ochracea	PCR	External forward	HUV_F02	24	TCCCACAGACAGAAAAAGCTTCCC
		PCR	External reverse	HUV_R02		CCATTAGAATAGCCATAGTTGTCG
	C byles					
	C. hylas	PCR	External forward	HUV_F03		GACTGCTCACGTATCCTACAAC
		PCR	External reverse	<i>HUV_</i> R03	25	CCATTAAAAAGCCATGGTTGTCGTC
	H. affinis	PCR	External forward	HUV_F04	22	GACTGCTCACGTATCCTTCAAC
		PCR	External reverse	Same with HUV_R03	3	
	N himachala	PCR		HUV_F05		
	N. himachala		External forward	_		ACTCTACTGAGGACTGCTCAC
		PCR	External reverse	HUV_R04	24	GTTTAGAGCGTCGAAGTTGAGTTG
	D. nerii	PCR	External forward	<i>HUV_</i> F06	22	CACGTAACTTGCAGAACTATCC
		PCR	External reverse	HUV_R05	21	CCATCATTAAAGCCGTAGTCG
	M. pyrrhosticta	PCR	External forward	Same with HUV_F05		
	M. pyrmosiicia					
		PCR	External reverse	HUV_R06		CATCAGTAAAGCGTTGGTTGTC
	M. bombylans	PCR	External forward	Same with HUV_F06	;	
		PCR	External reverse	HUV R07	24	GTATCGGTTGTCCATCAGTATAGC
	A. rubiginosa	PCR	External forward	HUV_F07	25	CTCACGTAACCTGCAAAACTATCCG
	A. Tubiginosu					
		PCR	External reverse	HUV_R08		CATCAAAAGTCCATCAGTAAAGCC
	T. japonica	PCR	External forward	Same with HUV_F05	,	
		PCR	External reverse	Same with HUV_R08	3	
	All	Sequencing	Internal forward	HUV_seqF01		ATATGTTCCTGAGGGCTAC
		Sequencing		HUV_seqF02		GAAATAAGAATAGCCAAAGC
			Internal forward			
		Sequencing	Internall reverse	HUV_seqR01		CGCTTCATGGGCAAACAC
		Sequencing	Internall reverse	HUV_seqR02	21	AAGCGATGCAAGCGTTAGTCA
SW	M. gaschkewitschii	PCR	External forward	HSW F01	24	CTGTAAAACATAACACCTCCGTCG
	0	PCR	External reverse	HSW_R01		GTACTATGGCAACTCATTAAAGCC
	A					
	A. ochracea	PCR	External forward	HSW_F02	24	GCTGTAGCAAATAACTTTCCTTCG
		PCR	External reverse	HSW_R02	24	AAATATCAACCAGAACCCAATCCC
	C. hylas	PCR	External forward	HSW_F03	25	AGCGACTAGTAGTCGGACTACTCAC
		PCR	External reverse			
				HSW_R03		GCTTGTGAGACTATGATGATTTCC
	H. affinis	PCR	External forward	HSW_F04	23	TTAGTCGGACTACTCACTTCGTC
		PCR	External reverse	HSW_R04	24	CGCTTCAAGTTCTTTGAATATCCC
	N. himachala	PCR	External forward	HSW F05	24	CAAGTGAGAAGCGACTTGTAGTCG
		PCR	External reverse	HSW_R05		TATTTCCTAAGAATGCGCGTCATG
	B "			_		TATTICCTAAGAATGCGCGTCATG
	D. nerii	PCR	External forward	Same with HSW_F03	3	
		PCR	External reverse	<i>HSW</i> _R06	25	ACAACATCAAATGTCGCTCTATCTG
	M. pyrrhosticta	PCR	External forward	Same with HSW F04	1	
	13	PCR	External reverse	HSW_R07		AAGGTAATTTTGGTATGGTGGGTG
	Marken and the second					AAGGIAAIIIIGGIAIGGIGGGIG
	M. bombylans	PCR	External forward	Same with HSW_F03		
		PCR	External reverse	<i>HSW</i> _R08	24	CTTTTGTCTTCATCTCGTTACACG
	A. rubiginosa	PCR	External forward	HSW F06	25	TCTGCGACTTGTAGTCGGACTACTC
	-	PCR	External reverse	<i>HSW</i> _R09	25	CTCCAATGACTTTGTAGCTGGTATG
	Tionopico					
	T. japonica	PCR	External forward	Same with HSW_F03		
		PCR	External reverse	<i>HSW</i> _R10	24	TGTGGGTAGAAGAGAATTGATTGG
	All	Sequencing	Internal forward	HSW_seqF01	18	GGGTTTCCTGACGACGTG
		Sequencing	Internal forward	HSW_seqF02		AGCGTTGAGATCAGGATAG
		Sequencing	Internall reverse	HSW_seqR01		ATCTTCTTGGCTTGCTCTTG
		Sequencing	Internall reverse	HSW_seqR02	19	GCCAGGTTTATCACGAACA
LW	M. gaschkewitschii	PCR	External forward	HLW_F01	25	GTAATAACCATCTCCAAGCGACTTC
	-	PCR	External reverse	HLW_R01		TAATAAAGAACATCGCTTCGGCAC
	Apphrases			HLW F02		
	A. ochracea	PCR	External forward	_		CATCTCCAAGCGATTTCCCCTAC
		PCR	External reverse	HLW_R02	24	TAATAAAGAACATCGCTTCGGCAG
	C. hylas	PCR	External forward	HLW_F03	24	GTAATAACCATCTCAAAGCGACTC
	-	PCR	External reverse	Same with HLW R02	2	
	H. affinis	PCR		_		
	n. allillis		External forward	Same with HLW_F03		
		PCR	External reverse	Same with HLW_R02		
	N. himachala	PCR	External forward	HLW_F04	24	CTACAGGAATTGTGTTGATACTCC
		PCR	External reverse	<i>HLW</i> _R03		GAACATCGCTTCGGCAAAATCGTG
	D norii	PCR				
	D. nerii		External forward	HLW_F05		TCTCCAAGCGACTCCCTTATCC
		PCR	External reverse	Same with HLW_R02	2	
	M. pyrrhosticta	PCR	External forward	HLW_F06	24	CATCTCTAAGCGATCCCTATCCTG
		PCR	External reverse	HLW_R04		TAATAAAGATCATCGCTTCGGCAG
						TETTERIOUTCALCOCTICOGCAG
	M. bombylans	PCR	External forward	Same with HLW_F06		
		PCR	External reverse	Same with HLW_R02	2	
	A. rubiginosa	PCR	External forward	Same with HLW_F05		
		PCR	External reverse	Same with <i>HLW</i> _R02		
	Time			_		
	T. japonica	PCR	External forward	Same with HLW_F05		
		PCR	External reverse	Same with HLW_R02	2	
	All	Sequencing	Internal forward	HLW_seqF01		TGCCCGAAGGAAACATGAC
	/ 111			HLW_seqF02		ACCATTTCCTTGTGGTTCATG
					- 11	
		Sequencing	Internal forward			
		Sequencing Sequencing	Internal lorward	HLW_seqR01		TCATTTTCTTAGCCTGTTCC

		Visual pigments								Screening pigment						
Model	Species	UV A max (nm)	Mean (AA max from Noct.) (nm)	SW A max (nm)	Mean ($\Delta\lambda_{max}$ from Noct.) (nm)	LW A max (nm)	Mean (Ad max from Noct.) (nm)	UV amplitude f _{UV} (relative ratio, %)	SW amplitude f _{SW} (relative ratio, %)	LW amplitude f _{LW} (relative ratio, %)	µ 1 (nm)	σ1 (nm)	P 1	µ2 (nm)	$\sigma_2 (nm)$	P 2
$S_a(\lambda)=S(\lambda)-A(\lambda$	M. gaschkewitschi (n = 20)	353.1	350.6	448.3	448.4	534.4	534.9	0.633 (24.4%)	0.606 (23.3%)	1.358 (52.3%)	459.8	154.5	0.634	652.3	63.9	-0.269
	T. japonica (n = 19)	348.1	550.0	448.4	440.4	535.4	0.626 (28.2%)	0.434 (19.5%)	1.162 (52.3%)	0.0095	543.2	0.344	689.1	63.8	-0.168	
	C. hylas (n = 18)	344.5	346.7 (-3.9)	431.3	439.4 (-9.0)	513.0	520.3 (-14.6)	0.837 (32.5%)	0.575 (22.3%)	1.163 (45.2%)	408.8	107.2	0.771	533.1	73.1	-0.262
	M. pyrrhosticta (n = 18)	348.8	040.7 (-3.8)	447.5		527.5	020.3 (-14.0)	0.511 (22.5%)	0.539 (23.8%)	1.218 (53.7%)	390.7	125.9	0.429	653.0	34.6	-0.048

Table S3. Parameters of the absorption spectra of visual and screening pigments in the hawkmoth species